基于深度学习的高精度交通标志检测系统(PyTorch+Pyside6+YOLOv5模型)

news2025/2/25 6:10:47

摘要:基于CCTSDB数据集的高精度交通标志(指示、禁止和警告)检测系统可用于日常生活中来检测与定位交通标志目标,利用深度学习算法可实现图片、视频、摄像头等方式的交通标志目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括交通标志训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本交通标志检测系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度交通标志检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的交通标志数据集标注了指示标志、静止标志和警告标志这三个类别,数据集总计17856张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的交通标志检测识别数据集包含训练集16356张图片,验证集1500张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的交通标志数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对交通标志数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/767934.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【react + antd】antd如何自定义请求使用antd的upload组件实现图片上传且可预览可删除

文章目录 1. 效果展示2. customRequest如何使用?特别注意: 3. 控制上传时什么时候使用customRequest,什么时候选择beforeUpload方法? 1. 效果展示 官网给出的案例无法使用封装好的请求方式上传图片,以及无法满足上传图…

使用模板创建【vite+vue3+ts】项目出现 “找不到模块‘vue‘或其相应的类型声明” 的解决方案

问题描述 项目前台需要使用Vue3Ts来写一个H5应用,然后我用模板创建 npm create vitelatest vue3-vant-mobile -- --template vue-ts创建完后进入HelloWorld.vue,两眼一黑 解决办法一 npm i --save-dev types/node然后在tsconfig.json的"compi…

【ARM Cortex-M 系列 1 -- Cortex-M0, M3, M4, M7, M33 差异】

文章目录 Cortex-M 系列介绍Cortex-M0/M0 介绍Cortex-M3/M4 介绍Cortex-M7 介绍Cotex-M33 介绍 下篇文章:ARM Cortex-M 系列 2 – CPU 之 Cortex-M7 介绍 Cortex-M 系列介绍 Cortex-M0/M0 介绍 Cortex-M0 是 ARM 公司推出的一款微控制器(MCU&#xff0…

Golang跨平台UI框架之Wails(二)

上一篇文章我们讲解了如何简单创建一个 wails 的项目,但是现在有很多前端框架我们可以选择,比如: AngularVueSvelteReactLitVanilla各个都是时代的弄潮儿,就看哪一个适合你了,后续的系列都是以Angular为例。 1. 创建Angular模板项目 由于 wails 是没有官方支持Angular的…

代码随想录算法训练营之JAVA|第六天| 454. 四数相加 II

今天是第6天刷leetcode,立个flag,打卡60天。 算法挑战链接 454. 四数相加 IIhttps://leetcode.cn/problems/4sum-ii/ 第一想法 理解题目:找到四个数相加等于0 ——> 找到两个互为相反的数 理解完题目之后,那么我们要做的就…

IP首部报文字段

一、IP首部报文字段 字段如下图所示 二、每个字段的含义 版本 表示 IP 协议的版本。通信双方使用的 IP 协议版本必须一致。目前广泛使用的IP协议版本号为 4,即 IPv4 首部长度 这个字段所表示数的单位是 32 位字长(1 个 32 位字长是 4 字节&#xff0…

设计模式-组合模式在Java中的使用示例-杀毒软件针对文件和文件夹进行杀毒

场景 组合模式 组合模式(Composite Pattern): 组合多个对象形成树形结构以表示具有“整体—部分”关系的层次结构。 组合模式对单个对象(即叶子对象)和组合对象(即容器对象)的使用具有一致性, 组合模式…

不会接口测试?用Postman轻松入门 —— Postman实现get和post请求

测试行业现在越来越卷,不会点接口测试好像简历都已经拿不出手了,但很多小伙伴都会头疼:接口测试应该怎么入门?那么多的接口测试工具应该学哪个? 其实,接口测试工具,就像吃饭用的筷子&#xff0…

25.JavaWeb-接口文档Swagger

1.Swagger swagger是一款可以根据resutful风格生成的生成的接口开发文档,并且支持做测试的一款中间软件。 1.1 接口文档 接口文档是用于描述API的一份文档,它包含了API的详细信息,包括API的请求和响应参数、接口路径、请求方法、数据类型、返…

企企通入选《2023数字化采购发展报告》,持续赋能企业数字化采购

近日,国内知名产业数字化服务平台亿邦智库联合中国物流与采购联合会公共采购分会共同发布了《2023数字化采购发展报告》。 企企通一直以来积极推动企业采购供应链数字化升级和变革,不断通过技术、产品、服务的创新,引领国内采购供应链数字化的…

保持领先竞争对手,从普通变为非凡;为您的Android应用赋能数据结构和算法

数据结构和算法为Android开发提供了基础数据存储和处理的工具。开发者可以根据具体需求选择合适的数据结构和算法,以提高应用的性能、效率和用户体验。Android框架也提供了许多内置的数据结构和算法实现,如Bundle、ArrayAdapter等,以便开发者…

开发工具篇第二十六讲:使用IDEA进行本地调试和远程调试

开发工具篇第二十六讲:使用IDEA进行本地调试和远程调试 Debug用来追踪代码的运行流程,通常在程序运行过程中出现异常,启用Debug模式可以分析定位异常发生的位置,以及在运行过程中参数的变化;并且在实际的排错过程中&am…

【Visual Studio Code】---自定义键盘快捷键设置

概述 一个好的文章能够帮助开发者完成更便捷、更快速的开发。书山有路勤为径,学海无涯苦作舟。我是秋知叶i、期望每一个阅读了我的文章的开发者都能够有所成长。 一、进入键盘快捷键设置 1、进入键盘快捷键设置方法1 使用快捷键进入键盘快捷键设置先按 Ctrl K再…

k8s如何访问 pod 元数据

如何访问 pod 元数据 **我们在 pod 中运行容器的时候,是否也会有想要获取当前 pod 的环境信息呢?**咱们写的 yaml 清单写的很简单,实际上部署之后, k8s 会给我们补充在 yaml 清单中没有写的字段,那么我们的 pod 环境信…

【软件测试】Git 实战详解 - 分支详细,看这篇就够了.,..

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 Git 是如何保存数…

【项目 进程3】2.6 exce函数族 2.7 进程退出、孤儿进程、僵尸进程

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 2.6 exec函数族介绍(execute 执行)exec函数族 2.7 进程退出、孤儿进程、僵尸进程进程退出孤儿进程僵尸进程 2.6 exec函数族介绍(…

线程系列3-关于 CompletableFuture

线程系列3-关于 CompletableFuture 1、从 Future 接口说起2、CompletableFuture 对 Future 的改进2.1、CompletionStage 接口类2.2、runAsync 和 supplyAsync 创建子任务2.3、 whenComplete 和 exceptionally 异步任务回调钩子2.4、调用 handle() 方法统一处理异常和结果2.5、异…

计讯物联智慧景区应用解决方案,开启交互式智慧旅游新篇章

方案背景 后疫情时代,旅游市场逐步回暖。随着游客的旅游需求趋向个性化、多元化,景区的数字化转型升级势在必行。在此背景下,计讯物联充分发挥5G、云计算、物联网、大数据等技术的应用价值,以技术创新推动业务创新,面…

基于springboot+webservice+mysql实现的物业报修管理系统

基于springbootWebservicemysql实现的物业报修管理系统 一、系统介绍二、功能展示1.添加报修单(业主)2.缴费(业主)3.确定修复(管理员) 三、其它系统四、获取源码 一、系统介绍 系统主要功能: 通过JaxWsDynamicClientFactory调用Webservice接口实现物业报修管理。 业…

Linux·从 URL 输入到页面展现到底发生什么?

打开浏览器从输入网址到网页呈现在大家面前,背后到底发生了什么?经历怎么样的一个过程?先给大家来张总体流程图,具体步骤请看下文分解! 总体来说分为以下几个过程: DNS 解析:将域名解析成 IP 地址TCP 连接&#xff1a…