设计模式07-责任链模式

news2024/11/16 10:45:55

责任链模式属于行为设计模式,常见的过滤器链就是使用责任链模式设计的。

文章目录

  • 1、真实开发场景的问题引入
  • 2、责任链模式讲解
    • 2.1 核心类及类图
    • 2.2 基本代码
  • 3、利用构建者模式解决问题
  • 4、责任链模式的应用实例
  • 5、总结
    • 5.1 解决的问题
    • 5.2 使用场景
    • 5.3 优缺点

1、真实开发场景的问题引入

Q:假设有一个闯关游戏,共三关,每一关达到通过条件后才能进入下一关,使用java实现。
A:针对这个问题,按照朴素的想法,我们可以定义三个类,分别是第一关、第二关、第三关,客户端启动游戏首先进入第一关,然后第一关通过后进入第二关,依次类推。我们可以得到这样的代码如下:

@Slf4j
public class FirstLevel {
    @Autowired
    private SecondLevel secondLevel;
    public void play(){
        log.info("进入第一关");
        //游戏操作,获得分数
        int res = 80;
        if(res >= 80){
            secondLevel.play();
        }else {
            return;
        }
    }
}
@Component
@Slf4j
public class SecondLevel {
    @Autowired
    private ThirdLevel thirdLevel;
    public void play(){
        log.info("进入第二关");
        //游戏操作,获得分数
        int res = 90;
        if(res >= 90){
            thirdLevel.play();
        }else {
            return;
        }
    }
}
@Component
@Slf4j
public class ThirdLevel {
    public void play(){
        log.info("进入第三关");
        //游戏操作,获得分数
        int res = 95;
        if(res >= 95){
            log.info("游戏通关");
        }else {
            return;
        }
    }
}

@SpringBootTest
@RunWith(SpringRunner.class)
@Slf4j
class DpApplicationTests {
    @Autowired
    private FirstLevel firstLevel;

    @Test
    public void client(){
        firstLevel.play();
    }
}

上述代码有什么问题呢?

  • 耦合性太强,每个类中包含其他类
  • 如果想改变关卡的顺序需要改类内部代码

2、责任链模式讲解

责任链模式应用的场景是:一个请求,有很多处理者可以处理,这些处理者构成一个链,请求只需要发送到链上,不用管最终是谁处理了请求,也不用管请求在链上是怎么传递的。这样就实现了请求者与被请求者的解耦,同时也只需定义一条链,把处理者放到链上同时定义好处理者的顺序,处理者之间也不用相互持有。

2.1 核心类及类图

在这里插入图片描述

一个抽象处理器接口和三个具体的处理器,在处理器链类中有一个List,其中放的是三个具体处理器,在客户端中使用处理器链对象与请求交互。

2.2 基本代码

  • 1 定义一个处理器返回结果类型,其中包括处理结果数据(范型)、是否继续在链上传播
@Data
public class ProcessResult<R> {
    private boolean next;
    private R data;

    public ProcessResult(boolean next, R data) {
        this.next = next;
        this.data = data;
    }

    /**
     * 继续处理并返回数据
     * @param data
     * @param <R>
     * @return
     */
    public static <R> ProcessResult resumeData(R data){
        return new ProcessResult(true,data);
    }

    /**
     * 继续处理不返回数据
     * @param <R>
     * @return
     */
    public static <R> ProcessResult resumeNoData(){
        return new ProcessResult(true,null);
    }

    /**
     * 不继续处理+返回数据
     * @param <R>
     * @return
     */
    public static <R> ProcessResult stopData(R data){
        return new ProcessResult(false,data);
    }

    /**
     * 不继续处理+不返回数据
     * @param <R>
     * @return
     */
    public static <R> ProcessResult stopNoData(){
        return new ProcessResult(false,null);
    }
}

  • 2 定义抽象的处理器,返回值为上面定义的类型;有两个范型,一个是处理器接收的参数,另一个是处理器返回具体数据的类型(包裹在ProcessResult中)
public interface Processor<Result,Param> {
    /**
     * 使用范型的方法、类,需要指定范型
     * @param param 处理器参数
     * @return Res 返回结果
     */
    ProcessResult<Result> process(Param param );


    /**
     * 接口的默认方法,表示该处理器是否已经处理过请求
     * @return
     */
    default boolean isProcessed(){
        return false;
    }
}
  • 3 定义三个具体的处理器,用来处理请求,使用order注解规定了JavaBean扫描的顺序,实现Processor注意指明范型参数
@Component
@Order(1)
@Slf4j
public class ConcreteProcessor01 implements Processor<String,String>{
    @Override
    public ProcessResult<String> process(String s) {
        //通过参数判断是不是处理请求
        log.info("ConcreteProcessor01处理");
        //处理
        return ProcessResult.resumeData(s);
    }
}
@Component
@Order(2)
@Slf4j
public class ConcreteProcessor02 implements Processor<String,String>{
    @Override
    public ProcessResult<String> process(String s) {
        //通过参数判断是不是处理请求
        log.info("ConcreteProcessor02处理");
        //处理
        return ProcessResult.stopData(s);
    }
}
@Component
@Order(3)
@Slf4j
public class ConcreteProcessor03 implements Processor<String,String>{
    @Override
    public ProcessResult<String> process(String s) {
        //通过参数判断是不是处理请求
        log.info("ConcreteProcessor03处理");
        //处理
        return ProcessResult.resumeData(s);
    }
}
  • 4 定义处理器链,构造函数注入List

    类型参数,spring容器会扫描所有的P类型的Bean,放到List中。Processor<Result,Param> 前面定义的ConcreteProcessor01、02、03一致(即Processor<String,String>),但是这里为了保证BaseChain的通用性,即可以定义多个聚合不同类型处理器的处理器链,该处使用范型。

@Component
@Slf4j
public class BaseChain<Result,Param> {
    private List<Processor<Result,Param>> processors;

    @Autowired
    public BaseChain(List<Processor<Result,Param>> processors) {
        this.processors = processors;
    }

    public void doProcess(Param param) {
        for (Processor processor : processors) {
            ProcessResult process = processor.process(param);
            if (process.getData() != null) {
                log.info(process.getData().toString());
            }
            if (!process.isNext()) {
                return;
            }
        }
    }
}
  • 5 客户端
@SpringBootTest
@RunWith(SpringRunner.class)
@Slf4j
class DpApplicationTests {
    @Autowired
    private BaseChain baseChain;

    @Test
    public void chainTest(){
        baseChain.doProcess("123");
    }
}

输出:
在这里插入图片描述

3、利用构建者模式解决问题

针对1中的问题可以套用2中的代码解决

4、责任链模式的应用实例

Spring Web 中的 HandlerInterceptor

HandlerInterceptor接口在web开发中非常常用,里面有preHandle()、postHandle()、afterCompletion()三个方法,preHandle()方法在请求处理之前被调用、postHandle()方法在请求处理完成后,但在视图渲染之前被调用、afterCompletion()方法在视图渲染完成后被调用

public interface HandlerInterceptor {
	default boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler)
			throws Exception {

		return true;
	}

	default void postHandle(HttpServletRequest request, HttpServletResponse response, Object handler,
			@Nullable ModelAndView modelAndView) throws Exception {
	}

	default void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler,
			@Nullable Exception ex) throws Exception {
	}
}

这样的过滤器会有很多个,使用责任链模式,将这些过滤器放在一个链中,即HandlerExecutionChain中,由HandlerExecutionChain对所有的HandlerInterceptor进行调用。

public class HandlerExecutionChain {

	...

    //在数组中存放所有的过滤器
	@Nullable
	private HandlerInterceptor[] interceptors;
	//数组的下标
	private int interceptorIndex = -1;
	//pre的调度
	boolean applyPreHandle(HttpServletRequest request, HttpServletResponse response) throws Exception {
		HandlerInterceptor[] interceptors = getInterceptors();
		if (!ObjectUtils.isEmpty(interceptors)) {
			for (int i = 0; i < interceptors.length; i++) {
			//遍历过滤器
				HandlerInterceptor interceptor = interceptors[i];
        //preHandle返回false,进入该if,结束处理流程,
				if (!interceptor.preHandle(request, response, this.handler)) {
          //执行渲染完成后的逻辑
					triggerAfterCompletion(request, response, null);
					return false;
				}
        //修改当前指向的过滤器下标,记录最后一个成功执行preHandle()方法的拦截器的索引。
        //如果某个拦截器的preHandle()方法返回false,则遍历将停止,并且请求处理也将停止。
        //在这种情况下,HandlerExecutionChain需要调用所有已成功执行preHandle()方法的拦截器的afterCompletion()方法。
        //这时候就需要使用interceptorIndex得到最后一个成功执行的preHandle方法所在的拦截器在拦截链的位置。
				this.interceptorIndex = i;
			}
		}
		return true;
	}
}

5、总结

5.1 解决的问题

职责链上的处理者负责处理请求,客户只需要将请求发送到职责链上即可,无须关心请求的处理细节和请求的传递,所以职责链将请求的发送者和请求的处理者解耦了。

5.2 使用场景

在处理消息的时候以过滤很多道。

5.3 优缺点

优点: 1、降低耦合度。它将请求的发送者和接收者解耦。 2、简化了对象。使得对象不需要知道链的结构。 3、增强给对象指派职责的灵活性。通过改变链内的成员或者调动它们的次序,允许动态地新增或者删除责任。 4、增加新的请求处理类很方便。

缺点: 1、不能保证请求一定被接收。 2、系统性能将受到一定影响,而且在进行代码调试时不太方便,可能会造成循环调用。 3、可能不容易观察运行时的特征,有碍于除错。


参考:
[1] 实战:设计模式之责任链设计模式深度解析
[2] 责任链模式在 Spring 中的应用
[3] 责任链模式-菜鸟教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/757451.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机的工作原理(操作系统篇)

文章目录 1.操作系统的定位1.硬件2.驱动3.操作系统内核4.系统调用 2.进程3.PCB中有哪些描述进程的特征4.内存管理 1.操作系统的定位 先看一张图: 1.操作系统是最接近硬件的软件,是软件/硬件/用户之间交互的媒介; 2.操作系统起到一个管理的作用 1)对下,要管理硬件设备 2)对上,…

【100天精通python】Day4:运算符

目录 1 算数运算符 2 赋值运算符 3 比较&#xff08;关系运算符&#xff09; 4 逻辑运算符 5 位运算符 6 运算符的优先级 以下是一个完整的示例代码&#xff0c;用于计算学生三科成绩的分差和平均分&#xff1a; 1 算数运算符 Python中的算术运算符包括&#xff1a; 加…

如何在pd里设置win10虚拟机command+w关闭chrome浏览器的一个标签页

背景 在windows&#xff0c;我们知道 ctrlw 在chrome浏览器里可以关闭一个标签页&#xff0c;但是对于MacOS&#xff0c;pd的虚拟机里安装win10后&#xff08;pdparallel desktop)&#xff0c;commandw默认并不是料想中的相当于ctrlw关闭一个标签页&#xff0c;而是关闭所有的…

MPP概述

前言 最近忙于工作&#xff0c;有一段时间没更新自己的博客了&#xff0c;也就意味着囤积了一波需要梳理总结并记录的知识点&#xff0c;但可以保证的是所有都是零星的知识点&#xff0c;不会涉及工作内容。 一、MPP简介 MPP (Massively Parallel Processing)&#xff0c;即大…

Cisco学习笔记(CCNA)——Internetworking

Internetworking Internetworking Basics 什么是网络&#xff1f; 计算机网络&#xff1a;具有独立功能的多台计算机及其外部设备&#xff0c;通过通信线路连接起来 网络设备 Hub&#xff08;集线器&#xff09; 优点&#xff1a;便宜、操作简单 缺点&#xff1a;共享型、…

Set与Map的使用 + 二叉搜索树与哈希桶的大白话讲解和图解+完整代码实现(详细注释)

文章目录 前言一、Set与Map概念及场景模型纯Key模型Key-Value模型 Map 的使用Set 的使用 二、二叉搜索树什么是二叉搜索树代码实现二叉搜索树查找操作插入操作删除操作(难点)cur这个节点没有左子树(cur.left null)cur这个节点没有右子树(cur.right null)cur这个节点没有左右子…

springboot与rabbitmq的整合【演示5种基本交换机】

前言&#xff1a; &#x1f44f;作者简介&#xff1a;我是笑霸final&#xff0c;一名热爱技术的在校学生。 &#x1f4dd;个人主页&#xff1a;个人主页1 || 笑霸final的主页2 &#x1f4d5;系列专栏&#xff1a;后端专栏 &#x1f4e7;如果文章知识点有错误的地方&#xff0c;…

基于梯度下降的线性回归(Gradient Descent For Linear Regression)

概述&#xff1a; 梯度下降是很常用的算法&#xff0c;它不仅被用在线性回归上和线性回归模型、平方误差代价函数。在本次&#xff0c;我们要将梯度下降和代价函数结合。我们将用到此算法&#xff0c;并将其应用于具体的拟合直线的线性回归算法里。 梯度下降算法和线性回归算法…

Cell 子刊 | 深度睡眠脑电波调节胰岛素敏感性促进血糖调节

缺乏高质量的睡眠会增加一个人患糖尿病的风险。然而&#xff0c;为什么会这样仍然是一个不解之谜。 近期&#xff0c;加州大学伯克利分校的一组睡眠科学家的新发现为我们揭示了答案。研究人员在人体内发现了一种潜在的调控机制&#xff0c;解释了为什么夜间深度睡眠脑电波能够调…

数据结构(王道)——线性表之静态链表顺序表和链表的比较

一、静态链表 定义&#xff1a; 代码实现&#xff1a; 如何定义一个静态链表 静态链表的基本操作思路&#xff1a; 初始化静态链表&#xff1a; 静态链表的查找、插入、删除 静态链表总结&#xff1a; 二、顺序表和链表的比较 逻辑结构对比&#xff1a; 存储结构对比&#xff…

golang关于成员变量使用:=

错误 错误原因 结构体成员变量不能与:一起用&#xff0c;这是一个语法错误。

Mybatis架构简介

文章目录 1.整体架构图2. 基础支撑层2.1 类型转换模块2.2 日志模块2.3 反射工具模块2.4 Binding 模块2.5 数据源模块2.6缓存模块2.7 解析器模块2.8 事务管理模块3. 核心处理层3.1 配置解析3.2 SQL 解析与 scripting 模块3.3 SQL 执行3.4 插件4. 接口层1.整体架构图 MyBatis 分…

SpringMVC【SpringMVC参数获取、SpringMVC处理响应】(二)-全面详解(学习总结---从入门到深化)

目录 SpringMVC参数获取_使用Servlet原生对象获取参数 SpringMVC参数获取_自定义参数类型转换器 SpringMVC参数获取_编码过滤器 SpringMVC处理响应_配置视图解析器 SpringMVC处理响应_控制器方法的返回值 SpringMVC处理响应_request域设置数据 SpringMVC处理响应_sessi…

【动手学深度学习】--02.Softmax回归

文章目录 Softmax回归1.原理1.1 从回归到多类分类1.2三种常见的损失函数 2.图像分类集2.1读取数据集2.2读取小批量2.3整合组件 3.从零实现Softmax回归3.1初始化模型参数3.2定义softmax操作3.3定义模型3.4定义损失函数3.5分类精度3.6训练3.7预测 4.softmax回归的简洁实现4.1初始…

计网笔记--应用层

1--网络程序的组织方式和关系 网络应用程序在各种端系统上的组织方式及其关系主要有两种&#xff1a; 客户/服务器方式&#xff08;C/S方式&#xff09;和对等方式&#xff08;P2P方式&#xff09;&#xff1b; 2--动态主机配置协议&#xff08;DHCP&#xff09; 动态主机配置协…

26 sigmoid Belief Network

文章目录 26 Sigmoid Belief Network26.1 背景介绍26.2 通过log-likelihood推断SBN的后验26.3 醒眠算法——Wake Sleep Algorithm 26 Sigmoid Belief Network 26.1 背景介绍 什么是Sigmoid Belief Network&#xff1f;Belief Network等同于Bayesian Network&#xff0c;表示有…

新手如何自学PostgreSQL(PG)

如果你是一个新手&#xff0c;想要自学PostgreSQL&#xff0c;下面是一些步骤和资源&#xff0c;可以帮助你入门&#xff1a; ①了解数据库基础知识&#xff1a;在开始学习PostgreSQL之前&#xff0c;建议你先了解一些数据库的基础概念和术语&#xff0c;例如表、列、行、SQL查…

【Elasticsearch】搜索结果处理和RestClient查询文档

目录 2.搜索结果处理 2.1.排序 2.1.1.普通字段排序 2.1.2.地理坐标排序 2.2.分页 2.2.1.基本的分页 2.2.2.深度分页问题 2.2.3.小结 2.3.高亮 2.3.1.高亮原理 2.3.2.实现高亮 2.4.总结 3.RestClient查询文档 3.1.快速入门 3.1.1.发起查询请求 3.1.2.解析响应 …

LangChain(6)构建用户自己的Agent

构建用户自己的Agent 编写简单的计算工具编写有多个参数的工具其它更高级的工具 LangChain 中有一些可用的Agent内置工具&#xff0c;但在实际应用中我们可能需要编写自己的Agent。 编写简单的计算工具 !pip install -qU langchain openai transformersfrom langchain.tools …