LangChain + ChatGLM2-6B 搭建个人专属知识库

news2024/12/23 5:05:34

之前教过大家利用 langchain + ChatGLM-6B 实现个人专属知识库,非常简单易上手。最近,智谱 AI 研发团队又推出了 ChatGLM 系列的新模型 ChatGLM2-6B,是开源中英双语对话模型 ChatGLM-6B 的第二代版本,性能更强悍。

树先生之所以现在才更新 ChatGLM2-6B 知识库教程,是想等模型本身再多迭代几个版本,不至于刚出的教程很快不适配,或者项目本身一堆 bug,那样大家使用体验也不好。

ChatGLM2-6B 介绍

ChatGLM2-6B 在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,引入了如下新特性:

  • 更强大的性能:基于 ChatGLM 初代模型的开发经验,全面升级了基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。

  • 更长的上下文:基于 FlashAttention 技术,将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。
  • 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。

  • 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用

相比于初代模型,ChatGLM2-6B 多个维度的能力都取得了提升,以下是一些官方对比示例。

总的来说,看起来效果还不错,下面跟着树先生一起来试试水~

本文我将分 3 步带着大家一起实操一遍,并与之前 ChatGLM-6B 进行对比。

  • ChatGLM2-6B 部署
  • ChatGLM2-6B 微调
  • LangChain + ChatGLM2-6B 构建个人专属知识库

ChatGLM2-6B 部署

这里我们还是白嫖阿里云的机器学习 PAI 平台,使用 A10 显卡,这部分内容之前文章中有介绍。

免费部署一个开源大模型 MOSS

环境准备好了以后,就可以开始准备部署工作了。

下载源码

git clone https://github.com/THUDM/ChatGLM2-6B

安装依赖

cd ChatGLM2-6B
# 其中 transformers 库版本推荐为 4.30.2,torch 推荐使用 2.0 及以上的版本,以获得最佳的推理性能
pip install -r requirements.txt

下载模型

# 这里我将下载的模型文件放到了本地的 chatglm-6b 目录下
git clone https://huggingface.co/THUDM/chatglm2-6b $PWD/chatglm2-6b

参数调整

# 因为前面改了模型默认下载地址,所以这里需要改下路径参数
# 修改 web_demo.py 文件
tokenizer = AutoTokenizer.from_pretrained("/mnt/workspace/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("/mnt/workspace/chatglm2-6b", trust_remote_code=True).cuda()

# 如果想要本地访问,需要修改此处
demo.queue().launch(share=True, inbrowser=True, server_name='0.0.0.0', server_port=7860)

Web 模式启动

官方推荐用 Streamlit 启动会更流程一些,但受限于 PAI 平台没有分配弹性公网,所以还是用老的 gradio 启动吧。

python web_demo.py

ChatGLM2-6B 对比 ChatGLM-6B

先让 ChatGPT 作为考官,出几道题。

ChatGLM-6B 回答:

ChatGLM2-6B 回答:

明显可以看出,ChatGLM2-6B 相比于上一代模型响应速度更快,问题回答精确度更高,且拥有更长的(32K)上下文!

基于 P-Tuning 微调 ChatGLM2-6B

ChatGLM2-6B 环境已经有了,接下来开始模型微调,这里我们使用官方的 P-Tuning v2 对 ChatGLM2-6B 模型进行参数微调,P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。

安装依赖

# 运行微调需要 4.27.1 版本的 transformers
pip install transformers==4.27.1
pip install rouge_chinese nltk jieba datasets

禁用 W&B

# 禁用 W&B,如果不禁用可能会中断微调训练,以防万一,还是禁了吧
export WANDB_DISABLED=true

准备数据集

这里为了简化,我只准备了5条测试数据,分别保存为 train.json 和 dev.json,放到 ptuning 目录下,实际使用的时候肯定需要大量的训练数据。

{"content": "你好,你是谁", "summary": "你好,我是树先生的助手小6。"}
{"content": "你是谁", "summary": "你好,我是树先生的助手小6。"}
{"content": "树先生是谁", "summary": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{"content": "介绍下树先生", "summary": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{"content": "树先生", "summary": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}

参数调整

修改 train.shevaluate.sh 中的 train_filevalidation_filetest_file为你自己的 JSON 格式数据集路径,并将 prompt_columnresponse_column 改为 JSON 文件中输入文本和输出文本对应的 KEY。可能还需要增大 max_source_lengthmax_target_length 来匹配你自己的数据集中的最大输入输出长度。并将模型路径 THUDM/chatglm2-6b 改为你本地的模型路径。

1、train.sh 文件修改

PRE_SEQ_LEN=32
LR=2e-2
NUM_GPUS=1

torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
    --do_train \
    --train_file train.json \
    --validation_file dev.json \
    --preprocessing_num_workers 10 \
    --prompt_column content \
    --response_column summary \
    --overwrite_cache \
    --model_name_or_path /mnt/workspace/chatglm2-6b \
    --output_dir output/adgen-chatglm2-6b-pt-$PRE_SEQ_LEN-$LR \
    --overwrite_output_dir \
    --max_source_length 128 \
    --max_target_length 128 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 16 \
    --predict_with_generate \
    --max_steps 3000 \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate $LR \
    --pre_seq_len $PRE_SEQ_LEN

train.sh 中的 PRE_SEQ_LENLR 分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit 来改变原始模型的量化等级,不加此选项则为 FP16 精度加载。

2、evaluate.sh 文件修改

PRE_SEQ_LEN=32
CHECKPOINT=adgen-chatglm2-6b-pt-32-2e-2
STEP=3000
NUM_GPUS=1

torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
    --do_predict \
    --validation_file dev.json \
    --test_file dev.json \
    --overwrite_cache \
    --prompt_column content \
    --response_column summary \
    --model_name_or_path /mnt/workspace/chatglm2-6b \
    --ptuning_checkpoint ./output/$CHECKPOINT/checkpoint-$STEP \
    --output_dir ./output/$CHECKPOINT \
    --overwrite_output_dir \
    --max_source_length 128 \
    --max_target_length 128 \
    --per_device_eval_batch_size 1 \
    --predict_with_generate \
    --pre_seq_len $PRE_SEQ_LEN

CHECKPOINT 实际就是 train.sh 中的 output_dir

训练

bash train.sh

5 条数据大概训练了 50 分钟左右。

推理

bash evaluate.sh

执行完成后,会生成评测文件,评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在 ./output/adgen-chatglm2-6b-pt-32-2e-2/generated_predictions.txt。我们准备了 5 条推理数据,所以相应的在文件中会有 5 条评测数据,labels 是 dev.json 中的预测输出,predict 是 ChatGLM2-6B 生成的结果,对比预测输出和生成结果,评测模型训练的好坏。如果不满意调整训练的参数再次进行训练。

{"labels": "你好,我是树先生的助手小6。", "predict": "你好,我是树先生的助手小6。"}
{"labels": "你好,我是树先生的助手小6。", "predict": "你好,我是树先生的助手小6。"}
{"labels": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。", "predict": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{"labels": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。", "predict": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}
{"labels": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。", "predict": "树先生是一个程序员,热衷于用技术探索商业价值,持续努力为粉丝带来价值输出,运营公众号《程序员树先生》。"}

部署微调后的模型

这里我们先修改 web_demo.sh 的内容以符合实际情况,将 pre_seq_len 改成你训练时的实际值,将 THUDM/chatglm2-6b 改成本地的模型路径。

PRE_SEQ_LEN=32

CUDA_VISIBLE_DEVICES=0 python3 web_demo.py \
    --model_name_or_path /mnt/workspace/chatglm2-6b \
    --ptuning_checkpoint output/adgen-chatglm2-6b-pt-32-2e-2/checkpoint-3000 \
    --pre_seq_len $PRE_SEQ_LEN

然后再执行。

bash web_demo.sh

结果对比

原始模型

微调后模型

LangChain + ChatGLM2-6B 构建知识库

LangChain 知识库技术原理

目前市面上绝大部分知识库都是 LangChain + LLM + embedding 这一套,实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt 中 -> 提交给 LLM 生成回答。

从上面就能看出,其核心技术就是向量 embedding,将用户知识库内容经过 embedding 存入向量知识库,然后用户每一次提问也会经过 embedding,利用向量相关性算法(例如余弦算法)找到最匹配的几个知识库片段,将这些知识库片段作为上下文,与用户问题一起作为 promt 提交给 LLM 回答,很好理解吧。一个典型的 prompt 模板如下:

"""
已知信息:
{context} 

根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 
问题是:{question}
"""

更多关于向量 embedding 的内容可以参考我之前写的一篇文章。

ChatGPT 引爆向量数据库赛道

项目部署

下载源码

git clone https://github.com/imClumsyPanda/langchain-ChatGLM.git

安装依赖

cd langchain-ChatGLM
pip install -r requirements.txt

下载模型

# 安装 git lfs
git lfs install

# 下载 LLM 模型
git clone https://huggingface.co/THUDM/chatglm2-6b $PWD/chatglm2-6b

# 下载 Embedding 模型
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese $PWD/text2vec

# 模型需要更新时,可打开模型所在文件夹后拉取最新模型文件/代码
git pull

参数调整

模型下载完成后,请在 configs/model_config.py 文件中,对embedding_model_dictllm_model_dict参数进行修改。

embedding_model_dict = {
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "text2vec-base": "shibing624/text2vec-base-chinese",
    "text2vec": "/mnt/workspace/text2vec",
    "m3e-small": "moka-ai/m3e-small",
    "m3e-base": "moka-ai/m3e-base",
}

llm_model_dict = {
    ...
    "chatglm2-6b": {
        "name": "chatglm2-6b",
        "pretrained_model_name": "/mnt/workspace/chatglm2-6b",
        "local_model_path": None,
        "provides": "ChatGLM"
    },
    ...
}

# LLM 名称改成 chatglm2-6b
LLM_MODEL = "chatglm2-6b"

项目启动

Web 模式启动

python webui.py

如果报了这个错:

升级下 protobuf 即可。

pip install --upgrade protobuf==3.19.6

启动成功!

模型配置

上传知识库

基于 ChatGLM2-6B 的知识库问答

定制 UI

由于 LangChain 项目更新了接口,树先生之前开发的定制 UI 也同步更新进行了适配。

选择知识库

基于知识库问答

显示答案来源

好了,这一篇还挺长的,不过很多内容之前文章中都有提到,相当于是一篇 LangChain + LLM + embedding 构建知识库的总结篇了,大家收藏好这一篇就行了~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/754840.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GitUI汉化

1.下载汉化文件 下载地址 备用下载地址 https://files.cnblogs.com/files/chenghu/git-gui-zh-master.zip https://files.cnblogs.com/files/chenghu/git-gui-zh-master.zip 2.找到git安装路径 C:\Program Files\Git\mingw64\share\git-gui\lib 3.解压出1下载的文件 复制粘…

配置无线网卡AP模式为wifi热点

1、判断网卡是否支持AP 不管是自带无线网卡、还是外接的usb无线网卡,要先配置为AP热点模式。需要看检查是否支持AP模式。 例如,这里插入 rtl8811c 的双频usb无线网卡,iwconfig查看网卡信息 nvidianvidia-desktop:~$ iwconfig wlan0 un…

数据结构——各种常见算法的实现方法和思路

文章目录 常见的排序算法类型复杂度和稳定性 1.冒泡排序2.直接插入排序3.希尔排序4.简单选择排序方法1:双向遍历选择排序方法2:单向遍历选择排序 5.归并排序方法1:递归方法2:非递归 6.快速排序方法1:随机取keyi方法2&a…

GD32F303 DAM串口接收

1.设置串口 串口配置比较常规,我只应用的空闲中断。 2.DMA设置 我设置的DMA是串口接收到数据后保存到数组里,数组满了以后会自动从头开始,并且会进入一次DMA中断。

Jenkins+Robot 接口自动化测试

目录 前言: 设计目标 项目说明 目录结构 配置 jenkins 1.安装插件 2.配置项目 前言: JenkinsRobot是一种常见的接口自动化测试方案,可以实现自动化的接口测试和持续集成。Jenkins是一个流行的持续集成工具,而Robot Framew…

代码随想录day3 | 203.移除链表元素 707.设计链表 206.反转链表

文章目录 一、移除链表元素的思想两种方法 二、203.移除链表元素三、707.设计链表四、206.反转链表 一、移除链表元素的思想 直接让前一个节点指向后一个节点即可 两种方法 第一种:直接删除 第二种:头删的时候,直接headhead->next 其实…

JAVA数据结构、集合操作及常用API_C++开发转JAVA

文章目录 零、引言一、JAVA数据结构基础1.0 数据类型概述1.1 基本数据类型 零、引言一、JAVA数据结构基础1.0 数据类型概述1.1 基本数据类型1.2 包装类1.3 基本类型和包装类型的区别1.4 包装类型的缓存机制1.5 equals() 和 1.6 自动装箱拆箱1.7 浮点数精度丢失1.8 数值、字符转…

windows下配置pytorch + yolov8+vscode,并自定义数据进行训练、摄像头实时预测

最近由于工程需要,研究学习了一下windows下如何配置pytorch和yolov8,并自己搜集数据进行训练和预测,预测使用usb摄像头进行实时预测。在此记录一下全过程 一、软件安装和配置 1. vscode安装 windows平台开发python,我采用vscod…

Python基础合集 练习26 (turtle库的使用)

turtle是标准库 import turtle as t 窗口最小单位为像素 t.steup(width,height,起始点,起始点) 不是必须的 t.setup(800, 400) 不设置后面的起始点默认在中间 空间坐标体系 绝对坐标 四个象限 t.goto(x,y) 让某个位置的海龟到达某个地方 t.goto(100,100) t.goto(10…

使用flask开启一个简单的应用

Flask是非常流行的 Python Web框架,它能如此流行,原因主要有如下几点: 。有非常齐全的官方文档,上手非常方便。 。有非常好的扩展机制和第三方扩展环境,.工作中常见的软件都会有对应的扩展。自己动手实现扩展也很容易。 。社区活跃度非常高。…

【可解释学习】PyG可解释学习模块torch_geometric.explain

PyG可解释学习模块torch_geometric.explain PhiloshopyExplainerExplanationsExplainer AlgorithmExplanation Metrics参考资料 torch_geometric.explain是PyTorch Geometric库中的一个模块,用于解释和可视化图神经网络(GNN)模型的预测结果。…

RestClient操作文档和DSL查询语法

一、 文档操作 1、新增文档 本案例中,hotel为索引库名,61083为文档idTestvoid testAddDocument() throws IOException {// 1.根据id查询酒店数据Hotel hotel hotelService.getById(61083L);// 2.转换为文档类型HotelDoc hotelDoc new HotelDoc(hotel…

【数据结构】二叉树——链式结构

目录 一、前置声明 二、二叉树的遍历 2.1 前序、中序以及后序遍历 2.2 层序遍历 三、节点个数以及高度 3.1 节点个数 3.2 叶子节点个数 3.3 第k层节点个数 3.4 二叉树的高度/深度 3.5 查找值为x的节点 四、二叉树的创建和销毁 4.1 构建二叉树 4.2 二叉树销毁 4.3 …

2023年7月14日,ArrayList底层

集合框架图: 集合和数组的区别 AarrayList ArrayList底层实现原理 ArrayList的底层实现是基于数组的动态扩容。 初始容量:当创建一个新的ArrayList对象时,它会分配一个初始容量为10的数组。这个初始容量可以根据需求进行调整。 //表示默认的…

在Python中优雅地用多进程:进程池 Pool、管道通信 Pipe、队列通信 Queue、共享内存 Manager Value

Python 自带的多进程库 multiprocessing 可实现多进程。我想用这些短例子示范如何优雅地用多线程。中文网络上,有些人只是翻译了旧版的 Python 官网的多进程文档。而我这篇文章会额外讲一讲下方加粗部分的内容。 创建进程 Process,fork 直接继承资源&am…

zigbee DL-20无线串口收发模块使用(双车通讯,电赛模块推荐)

前言 (1)通常有时候,我们可能会需要让两个MCU进行通讯。而zigbee是最适合两个MCU短距离通讯的模块。他使用极其简单,非常适合两款MCU之间的进行数据交互。 (2)在各类比赛中,经常出现需要两个MCU…

独立看门狗 IWDG

独立看门狗介绍 Q:什么是看门狗? A:可以理解为对于一只修勾的定时投喂,如果不给它吃东西就会狂叫,因此可以通过观察修勾的状态来判断喂它的人有没有正常工作。 在由单片机构成的微型计算机系统中,由于单…

【业务功能篇44】Mysql 海量数据查询优化,进行分区操作

业务场景:当前有个发料表,随着业务数据量增多,达到了几千万级别水平,查询的效率就越来越低了,针对当前的架构情况,我们进行了分区的设置,通过对时间字段,按年月,一个月作…

ios 启动页storyboard 使用记录

本文简单记录ios启动页storyboard 如何使用和注意事项。 xcode窗口简介 以xcode14为例,新建项目如下图,左边文件栏中的LaunchScreen.storyboard 为默认启动页布局。窗口中间部分是storyboard中的组件列表,右侧为预览,可以看到渲…

H3C-Cloud Lab-实验-DHCP实验

实验拓扑图: 实验需求: 1、按照图示为R1配置IP地址 2、配置R1为DHCP服务器,提供服务的地址池为192.168.1.0/24网段,网关为192.168.1.254,DNS服务器地址为202.103.24.68,202.103.0.117 3、192.168.1.10-1…