● 738.单调递增的数字
为了方便遍历,先将int型转换为string类型,从后往前遍历,记住要设定一个flag标志
例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
这一点如果想清楚了,这道题就好办了。
此时是从前向后遍历还是从后向前遍历呢?
从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。
这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。
class Solution {
public:
int monotoneIncreasingDigits(int n) {
string number = to_string(n);
if(number.size()==1) return n;
int flag = number.size();
for(int i = number.size()-1;i>0;i--){
if(number[i-1]>number[i]){
number[i-1]=number[i-1]-1;
flag = i;
//number[i]='9';
}
}
for(int i = flag;i<number.size();i++){
number[i]='9';
}
int result = stoi(number);
return result;
}
};
● 968.监控二叉树
这道题目首先要想,如何放置,才能让摄像头最小的呢?
从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!
这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。
所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。
那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?
因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。
所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
局部最优推出全局最优,找不出反例,那么就按照贪心来!
此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
此时这道题目还有两个难点:
- 二叉树的遍历
- 如何隔两个节点放一个摄像头
#确定遍历顺序
在二叉树中如何从低向上推导呢?
可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。
后序遍历代码如下:
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (终止条件) return ;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
逻辑处理 // 中
return ;
}
注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态
#如何隔两个节点放一个摄像头
此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!
来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:
有如下三种:
- 该节点无覆盖
- 本节点有摄像头
- 本节点有覆盖
我们分别有三个数字来表示:
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
大家应该找不出第四个节点的状态了。
一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。
因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?
回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。
那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。
所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
接下来就是递推关系。
那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。
代码如下:
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。
主要有如下四类情况:
- 情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
如图:
代码如下:
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
- 情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:
- left == 0 && right == 0 左右节点无覆盖
- left == 1 && right == 0 左节点有摄像头,右节点无覆盖
- left == 0 && right == 1 左节点有无覆盖,右节点摄像头
- left == 0 && right == 2 左节点无覆盖,右节点覆盖
- left == 2 && right == 0 左节点覆盖,右节点无覆盖
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
代码如下:
if (left == 0 || right == 0) {
result++;
return 1;
}
- 情况3:左右节点至少有一个有摄像头
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
- left == 1 && right == 2 左节点有摄像头,右节点有覆盖
- left == 2 && right == 1 左节点有覆盖,右节点有摄像头
- left == 1 && right == 1 左右节点都有摄像头
代码如下:
if (left == 1 || right == 1) return 2;
从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
这种情况也是大多数同学容易迷惑的情况。
- 情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
以上四种情况我们分析完了,代码也差不多了,整体代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int result;
//0:无覆盖 1:有摄像头 2:有覆盖
int tre(TreeNode* cur){
if(cur == nullptr) return 2;//空节点肯定有覆盖
int left = tre(cur->left);//左
int right = tre(cur->right);//右
//中
if(left == 0 || right == 0) {//左孩子或者右孩子至少有一个无覆盖,此时改节点必须有摄像头
result++;
return 1;
}
if(left == 1 || right == 1) return 2;//右孩子或者左孩子至少有一个有摄像头,此时该节点必须为有覆盖
if(left == 2 && right == 2) return 0;//左孩子和右孩子都有覆盖,此时该节点一定是无覆盖状态,需要在该节点父节点装摄像头
return -1;//逻辑不可能走到这儿
}
int minCameraCover(TreeNode* root) {
result = 0;
if(tre(root) == 0){//根节点无覆盖
result++;
}
return result;
}
};
● 总结
贪心专题汇聚为一张图:
这个图是 代码随想录知识星球 (opens new window)成员:海螺人 (opens new window)所画,总结的非常好,分享给大家。
很多没有接触过贪心的同学都会感觉贪心有啥可学的,但只要跟着「代码随想录」坚持下来之后,就会发现,贪心是一种很重要的算法思维而且并不简单,贪心往往妙的出其不意,触不及防!
回想一下我们刚刚开始讲解贪心的时候,大家会发现自己在坚持中进步了很多!
这也是「代码随想录」的初衷,只要一路坚持下来,不仅基础扎实,而且进步也是飞速的。
在这十八道贪心经典题目中,大家可以发现在每一道题目的讲解中,我都是把什么是局部最优,和什么是全局最优说清楚。
这也是我认为判断这是一道贪心题目的依据,如果找不出局部最优,那可能就是一道模拟题。