C语言进阶之自定义类型(结构体,枚举,联合)

news2025/1/10 20:38:18

在这里插入图片描述

这里写目录标题

  • 1.结构体
    • 1.1 结构的基础知识
    • 1.2 结构的声明
    • 1.3 特殊的声明
    • 1.4 结构的自引用
    • 1.5 结构体变量的定义和初始化
    • 1.6 结构体内存对齐
    • 1.7 修改默认对齐数
    • 1.8 结构体传参
  • 2. 位段
    • 2.1 什么是位段
    • 2.2 位段的内存分配
    • 2.3 位段的跨平台问题
    • 2.4 位段在网络传输中的应用
    • 3. 枚举
    • 3.1 枚举类型的定义
    • 3.2 枚举的优点
    • 3.3 枚举的使用
  • 4. 联合(共用体)
    • 4.1 联合类型的定义
    • 4.2 联合的特点
    • 4.3 联合大小的计算
    • 结语

1.结构体

1.1 结构的基础知识

C 语言允许定义可存储相同类型数据项的变量,结构体是 C 编程中另一种用户自定义的可用的数据类型,它允许您存储不同类型的数据项。

结构体中的数据成员可以是基本数据类型(如 int、float、char 等),也可以是其他结构体类型、指针类型等。

1.2 结构的声明

struct tag
{
 	member-list;
}variable-list;

例如描述一个学生:

struct Stu
{
 	char name[20];//名字
 	int age;//年龄
	char sex[5];//性别
 	char id[20];//学号
}; //分号不能丢

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。
比如:

//匿名结构体类型
struct
{
 	int a;
 	char b;
 	float c;
}x;
struct
{
 	int a;
 	char b;
 	float c;
}a[20], *p;

上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?

//在上面代码的基础上,下面的代码合法吗?
p = &x;

警告:
编译器会把上面的两个声明当成完全不同的两个类型。
所以是非法的。

1.4 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?
我们以数据结构当中的链表节点为例

struct Node
{
 	int data;
 	struct Node* next;
};

所以答案是可以的,需要注意的是,我们看下面的写法

typedef struct
{
 	int data;
 	Node* next;
}Node;

这种写法是错误的,因为重命名Node定义在结构体最后,而指针在前,无法找到下一个结构体,所以是错的
改正后:

typedef struct
{
 	int data;
 	Node* next;
}Node;

1.5 结构体变量的定义和初始化

有了结构体类型,那如何定义变量,其实很简单。

struct Point
{
	int x;
	int y;
}p1; //声明类型的同时定义变量p1

struct Point p2; //定义结构体变量p2

//初始化:定义变量的同时赋初值。
struct Point p3 = { x, y };


struct Stu        //类型声明
{
	char name[15];//名字
	int age;      //年龄
};
struct Stu s = { "zhangsan", 20 };//初始化


struct Node
{
	int data;
	struct Point p;
	struct Node* next;
}n1 = { 10, {4,5}, NULL }; //结构体嵌套初始化

struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化

1.6 结构体内存对齐

我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐
那么如何计算结构体所占内存呢?

首先得掌握结构体的对齐规则

  1. 第一个成员在与结构体变量偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
    VS中默认的值为8
    Linux中没有默认对齐数,对齐数就是成员自身的大小
  3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

为什么存在内存对齐?
大部分的参考资料都是如是说的:

  1. 平台原因(移植原因)
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
  2. 性能原因
    数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
    原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

总体来说
结构体的内存对齐是拿空间来换取时间的做法。
以下面的结构体为例

int main()
{
	struct S1
	{
		char c1;
		int i;
		char c2;
	};
	printf("%d\n", sizeof(struct S1));
}

在这里插入图片描述
占用具体情况如下
在这里插入图片描述
这里第一个char类型占一个字节后,为了对其结构体中最大类型的对齐数int,也就是4个字节,所以补齐4个字节后,再存第二个int类型,第三个char因为前面8个字节已经对其,是最大对齐数的整数倍,所以直接进行存储,但是在整个结构体内存计算时,9个字节不是最大对齐数的整数倍,所以再补齐4个字节,也就是12个字节。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起。
将上面这个结构体稍作调整后

int main()
{
	struct S1
	{
		char c1;
		char c2;
		int i;
	};
	printf("%d\n", sizeof(struct S1));
}

在这里插入图片描述
占用具体情况如下
在这里插入图片描述
两个结构成员一模一样,但是所占空间的大小有了一些区别
我们再看下面这个题目

int main()
{
	struct S1
	{
		double d;
		char c;
		int i;
	};
	printf("%d\n", sizeof(struct S1));

	struct S2
	{
		char c1;
		struct S1 s1;
		double d;
	};
	printf("%d\n", sizeof(struct S2));
}

在这里插入图片描述
在这里插入图片描述
需要注意的是,在有结构体嵌套的情况下,char类型之后,只需补齐自身创建类型的最大对齐数,也就是double,即8个字节,往后正常按对齐数补齐,结构体整体大小对其包含嵌套结构体在内对其。

1.7 修改默认对齐数

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
    char c1;
    int i;
    char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
    char c1;
    int i;
    char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
    //输出的结果是什么?
    printf("%d\n", sizeof(struct S1));
    printf("%d\n", sizeof(struct S2));
    return 0;
}

在这里插入图片描述
结论
结构在对齐方式不合适的时候,我们可以自己更改默认对齐数。

1.8 结构体传参

直接上代码:

#include <stdio.h>
struct S
{
	int data[1000];
	int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
	printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
	printf("%d\n", ps->num);
}
int main()
{
	print1(s);  //传结构体
	print2(&s); //传地址
	return 0;
}

在这里插入图片描述
那么上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。
结论
结构体传参的时候,要传结构体的地址。

2. 位段

2.1 什么是位段

位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 int、unsigned int 或signed int 。
  2. 位段的成员名后边有一个冒号和一个数字。
    比如:
struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};

A就是一个位段类型。
那位段A的大小是多少?

printf("%d\n", sizeof(struct A));

在这里插入图片描述

2.2 位段的内存分配

  1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

比如下面这个例子:

struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};
struct S s = { 0 };
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

在这里插入图片描述

2.3 位段的跨平台问题

  1. int 位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机
    器会出问题。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是
    舍弃剩余的位还是利用,这是不确定的。

总结
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

2.4 位段在网络传输中的应用

在这里插入图片描述

3. 枚举

枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:
一周的星期一到星期日是有限的7天,可以一一列举。
性别有:男、女、保密,也可以一一列举。
月份有12个月,也可以一一列举
这里就可以使用枚举了。

3.1 枚举类型的定义

enum Day//星期
{
	Mon,
	Tues,
	Wed,
	Thur,
	Fri,
	Sat,
	Sun
};
enum Sex//性别
{
	MALE,
	FEMALE,
	SECRET
}enum Color//颜色
{
	RED,
	GREEN,
	BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,依次递增1,当然在声明枚举类型的时候也可以赋初值。
例如:

enum Color//颜色
{
 	RED=1,
 	GREEN=2,
 	BLUE=4
};

3.2 枚举的优点

为什么使用枚举?
我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点

  1. 增加代码的可读性和可维护性
  2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
  3. 便于调试
  4. 使用方便,一次可以定义多个常量

3.3 枚举的使用

enum Color//颜色
{
 RED=1,
 GREEN=2,
 BLUE=4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。

4. 联合(共用体)

4.1 联合类型的定义

联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如:

//联合类型的声明
union Un
{
	char c;
	int i;
};
int main()
{
	//联合变量的定义
	union Un un;
	//计算连个变量的大小
	printf("%d\n", sizeof(un));
	return 0;
}

在这里插入图片描述

4.2 联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。

union Un
{
	char c;
	int i;
};
int main()
{
	union Un un;
	// 下面输出的结果是一样的吗?
	printf("%d\n", &(un.i));
	printf("%d\n", &(un.c));
	//下面输出的结果是什么?
	un.i = 0x11223344;
	un.c = 0x55;
	printf("%x\n", un.i);
}

在这里插入图片描述
我们可以看到一个共用体是用同一块空间的,所以不要两个变量同时使用。

利用联合体判断当前计算机的大小端存储
代码如下:

int check_sys()
{
	union
	{
		int i;
		char c;
	}un = {.i = 1};
	return un.c;
}

int main()
{
	int ret = check_sys();
	

	if (ret == 1)
		printf("小端\n");
	else
		printf("大端\n");

	return 0;
}

在这里插入图片描述

4.3 联合大小的计算

联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
比如:

union Un1
{
	char c[5];
	int i;
};
union Un2
{
	short c[7];
	int i;
};

int main()
{
	//下面输出的结果是什么?
	printf("%d\n", sizeof(union Un1));
	printf("%d\n", sizeof(union Un2));

	return 0;
}

在这里插入图片描述
所以联合体的存储也是遵循对其规则的

结语

有兴趣的小伙伴可以关注作者,如果觉得内容不错,请给个一键三连吧,蟹蟹你哟!!!
制作不易,如有不正之处敬请指出
感谢大家的来访,UU们的观看是我坚持下去的动力
在时间的催化剂下,让我们彼此都成为更优秀的人吧!!!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/746769.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【科普贴】UWB定位详解:0维定位、一维定位、二维定位、三维定位

室内定位系统方案中&#xff0c;UWB定位技术目前应用较多&#xff0c;得益于UWB定位10-30厘米的超高定位精度。目前根据使用场景的不同&#xff0c;UWB TDOA定位系统的定位维度分为以下4种&#xff1a;0维定位&#xff08;存在性检测&#xff09;、一维定位、二维定位、三维定位…

spring cloud 搭建消息中间件 RabbitMQ 环境、Mac/Windows下载安装RabbitMQ、配置RabbitMQ环境变量

主要内容概述&#xff1a;spring cloud工程&#xff0c;Mac/Windows下载安装RabbitMQ&#xff0c;并配置环境变量 前言 这里学习如何安装 RabbitMQ&#xff0c;因为远程配置中心的动态更新需要结合 RabbitMQ 来使用。 什么是 RabbitMQ RabbitMQ 是消息队列中间件&#xff0c…

日撸java三百行day74

文章目录 说明通用BP神经网络之激活函数1. 激活函数2. 激活函数分类1.1 反正切函数&#xff08;ArcTan&#xff09;1.2 指数线性函数&#xff08;ELU&#xff09;1.3 恒等函数1.4 泄漏线性整流函数(LEAKY_RELU)1.5 softsign1.6 softplus1.7 Relu函数1.8 sigmoid函数1.9 双曲正切…

一拖三充电线(单USB-C转三充)的解决方案--HUSB251

HUSB251是一款PD DRP双向快充协议芯片&#xff0c;符合USB PD3.1协议&#xff0c;支持PPS、28V EPR FPDO和EPR AVS&#xff0c;并可提供灵活的可编程PDO。当其在Source模式下时&#xff0c;DPDM PHY支持可编程的专有协议&#xff0c;支持BC1.2和5V2.4A、QC2.0/3.0、AFC、FCP和S…

免费系统维护清理工具:Onyx for Mac图文安装教程

OnyX 是一款适用于 macOS 的免费系统维护和优化工具。它由法国开发者 Jol Barrire&#xff08;也称为 Titanium&#xff09;创建&#xff0c;旨在帮助 macOS 用户管理和优化其计算机系统。 OnyX 提供了许多功能和工具&#xff0c;可以帮助用户执行各种系统维护任务。它是一个非…

【雕爷学编程】Arduino动手做(117)---P10V706LED屏模组2

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

logstash的四个插件

grok 正则捕获插件 内置正则表达式调用 在logstash conf.d文件夹下面创建filter conf文件&#xff0c;内容如下 ​编辑 logstash 官方也给了一些常用的常量来表达那些正则表达式&#xff0c;可以到这个 Github 地址查看有哪些常用的常量&#xff1a; 自定义表达式调用 muta…

【深度学习】梳理一下概念和术语

1 说明 您是深度学习的新手,正在寻找全面的指南来帮助您了解基础知识及其他方面吗?不要再看了!在本文中,我们将深入研究 20 个基本的深度学习概念,从基础知识开始,逐渐转向更高级的主题。从人工神经网络(ANN)到梯度下降和激活函数(Sigmoid,ReLU,SoftMax),我们将探…

Pytorch 安装与配置

Pytorch 安装与配置 NVIDIA系统管理界面查看 nvidia-smi 进入NVIDIA系统管理界面 对应的详细解释看下图 参考博文 (53条消息) nvidia-smi命令详解和一些高阶技巧介绍_Chaos_Wang_的博客-CSDN博客 CUDA 查看 CUDA 有两类&#xff1a;其中一类是驱动API(Driver API)&#xff…

「深度学习之优化算法」(十二)水波算法

1. 水波算法简介 (以下描述,均不是学术用语,仅供大家快乐的阅读)   水波算法(Water wave optimization)是根据水波理论提出的优化算法。什么是水波理论?简单来说就是水波的宽度越小,其频率越高,频率与水波宽度的平方根成反比(具体细节我也不懂,物理方面的)。水波…

换零钱II:Python代码解Java题目

银行现存零钱面值种类动态变化但数量无限&#xff0c;类方法change()完成指定金额的最少零钱个数兑换。 (本笔记适合学透python基本数据结构&#xff0c;熟悉class的基构造&#xff0c;对类内全局变量有一定认的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1…

Mysql——》慢查询日志

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

TCR中的缓存和共享属性与PTE中的缓存和共享属性的区别是啥?

那么就请继续思考&#xff1a; Translation Table Walk访问页表的缓存策略&#xff0c;这里的页表到底是缓存到cache中&#xff0c;还是缓存到PTW中呢&#xff1f;

使用腾讯云轻量应用服务器搭建网站教程

腾讯云轻量应用服务器怎么搭建网站&#xff1f;太简单了&#xff0c;轻量服务器选择宝塔Linux镜像&#xff0c;然后在宝塔面板上添加站点&#xff0c;以WordPress建站为例&#xff0c;腾讯云服务器网来详细说下腾讯云轻量应用服务器搭建网站全流程&#xff0c;包括轻量服务器配…

【Elasticsearch】ES精确查询和范围查询,ES时间字段排序实例,ES倒排索引介绍

本文ES版本是7.X以上&#xff0c;之前的版本语法可能会有些差异&#xff0c;请注意这些比较重要的细节。问海量数据搜索时为什么ES会比较快&#xff1f; 精确查询 termQuery BoolQueryBuilder boolQuery QueryBuilders.boolQuery();boolQuery.must(QueryBuilders.termQuery(…

ORB-SLAM2学习笔记2之TUM开源数据运行ORB-SLAM2生成轨迹并用evo工具评估轨迹

文章目录 0 引言1 evo工具1.1 简介1.2 常用命令1.3 安装 2 TUM数据3 单目ORB-SLAM23.1 运行ORB-SLAM23.2 evo评估轨迹3.2.1 载入和对比轨迹3.2.2 计算绝对位姿误差 4 RGB-D ORB-SLAM24.1 运行ORB-SLAM24.2 evo评估轨迹4.2.1 载入和对比轨迹4.2.2 计算绝对轨迹误差 ORB-SLAM2学习…

软件工程——第12章面向对象实现知识点整理

本专栏是博主个人笔记&#xff0c;主要目的是利用碎片化的时间来记忆软工知识点&#xff0c;特此声明&#xff01; 文章目录 1. 面向对象语言技术的特点&#xff1f; 2.选择面向对象程序设计语言时主要应该考虑哪些因素&#xff1f; 3.面向对象设计结果只能用面向对象语言实…

第三方ipad电容笔哪个品牌好用?平板电容笔推荐

可能很多人都认为&#xff0c;苹果原装的电容笔&#xff0c;是不可取代&#xff0c;但我认为&#xff0c;这还要看个人的预算&#xff0c;以及实际的需求。苹果Pencil对于那些不太讲究画质的用户来说实在是太贵了&#xff0c;要是我们仅用于书写上&#xff0c;其实我们可以用平…

尚硅谷Docker实战教程-笔记13【高级篇,Docker轻量级可视化工具Portainer】

尚硅谷大数据技术-教程-学习路线-笔记汇总表【课程资料下载】视频地址&#xff1a;尚硅谷Docker实战教程&#xff08;docker教程天花板&#xff09;_哔哩哔哩_bilibili 尚硅谷Docker实战教程-笔记01【基础篇&#xff0c;Docker理念简介、官网介绍、平台入门图解、平台架构图解】…

Python 自学 day01 变量,变量命名规则,一些语法

1. Python 的变量的知识 1.1 Python 编程命令的读取时从上到下的。 1.2 Python 变量的命名规则&#xff1a; 1.2.1变量名只能包含字母、数字和下划线。变量名能以字母或下划线打头&#xff0c;但不能以数字打 头。例如&#xff0c;可将变量命名为message…