logstash的四个插件

news2024/11/25 15:33:31

grok 正则捕获插件

内置正则表达式调用

在logstash conf.d文件夹下面创建filter conf文件,内容如下

​编辑

 logstash 官方也给了一些常用的常量来表达那些正则表达式,可以到这个 Github 地址查看有哪些常用的常量:

自定义表达式调用

 mutate 数据修改插件

Mutate 过滤器常用的配置选项

示例:

 multiline 多行合并插件

 安装 multiline 插件

 使用 multiline 插件

date 时间处理插件


grok 正则捕获插件

grok 使用文本片段切分的方式来切分日志事件

内置正则表达式调用

%{SYNTAX:SEMANTIC}       

●SYNTAX代表匹配值的类型,例如,0.11可以NUMBER类型所匹配,10.222.22.25可以使用IP匹配。

●SEMANTIC表示存储该值的一个变量声明,它会存储在elasticsearch当中方便kibana做字段搜索和统计,你可以将一个IP定义为客户端IP地址client_ip_address,如%{IP:client_ip_address},所匹配到的值就会存储到client_ip_address这个字段里边,类似数据库的列名,也可以把 event log 中的数字当成数字类型存储在一个指定的变量当中,比如响应时间http_response_time,假设event log record如下:

message: 192.168.80.10 GET /index.html 15824 0.043

可以使用如下grok pattern来匹配这种记录
%{IP:client_id_address} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:http_response_time}

在logstash conf.d文件夹下面创建filter conf文件,内容如下

# /etc/logstash/conf.d/01-filter.conf
filter {
  grok {
    match => { "message" => "%{IP:client_id_address} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:http_response_time}" }
  }
}

以下是filter结果
client_id_address: 192.168.80.10
method: GET
request: /index.html
bytes: 15824
http_response_time: 0.043


 

 logstash 官方也给了一些常用的常量来表达那些正则表达式,可以到这个 Github 地址查看有哪些常用的常量:

https://github.com/logstash-plugins/logstash-patterns-core/blob/main/patterns/ecs-v1/grok-patterns

USERNAME [a-zA-Z0-9._-]+
USER %{USERNAME}
EMAILLOCALPART [a-zA-Z][a-zA-Z0-9_.+-=:]+
EMAILADDRESS %{EMAILLOCALPART}@%{HOSTNAME}
INT (?:[+-]?(?:[0-9]+))
BASE10NUM (?<![0-9.+-])(?>[+-]?(?:(?:[0-9]+(?:\.[0-9]+)?)|(?:\.[0-9]+)))
NUMBER (?:%{BASE10NUM})
BASE16NUM (?<![0-9A-Fa-f])(?:[+-]?(?:0x)?(?:[0-9A-Fa-f]+))
BASE16FLOAT \b(?<![0-9A-Fa-f.])(?:[+-]?(?:0x)?(?:(?:[0-9A-Fa-f]+(?:\.[0-9A-Fa-f]*)?)|(?:\.[0-9A-Fa-f]+)))\b

POSINT \b(?:[1-9][0-9]*)\b
NONNEGINT \b(?:[0-9]+)\b
WORD \b\w+\b
NOTSPACE \S+
SPACE \s*
DATA .*?
GREEDYDATA .*
QUOTEDSTRING (?>(?<!\\)(?>"(?>\\.|[^\\"]+)+"|""|(?>'(?>\\.|[^\\']+)+')|''|(?>(?>\\.|[^\\]+)+)|))
UUID [A-Fa-f0-9]{8}-(?:[A-Fa-f0-9]{4}-){3}[A-Fa-f0-9]{12}
# URN, allowing use of RFC 2141 section 2.3 reserved characters
URN urn:[0-9A-Za-z][0-9A-Za-z-]{0,31}:(?:%[0-9a-fA-F]{2}|[0-9A-Za-z()+,.:=@;$_!*'/?#-])+

# Networking
MAC (?:%{CISCOMAC}|%{WINDOWSMAC}|%{COMMONMAC})
CISCOMAC (?:(?:[A-Fa-f0-9]{4}\.){2}[A-Fa-f0-9]{4})
WINDOWSMAC (?:(?:[A-Fa-f0-9]{2}-){5}[A-Fa-f0-9]{2})
COMMONMAC (?:(?:[A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2})
IPV6 ((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:)))(%.+)?
IPV4 (?<![0-9])(?:(?:[0-1]?[0-9]{1,2}|2[0-4][0-9]|25[0-5])[.](?:[0-1]?[0-9]{1,2}|2[0-4][0-9]|25[0-5])[.](?:[0-1]?[0-9]{1,2}|2[0-4][0-9]|25[0-5])[.](?:[0-1]?[0-9]{1,2}|2[0-4][0-9]|25[0-5]))(?![0-9])
IP (?:%{IPV6}|%{IPV4})
HOSTNAME \b(?:[0-9A-Za-z][0-9A-Za-z-]{0,62})(?:\.(?:[0-9A-Za-z][0-9A-Za-z-]{0,62}))*(\.?|\b)
IPORHOST (?:%{IP}|%{HOSTNAME})
HOSTPORT %{IPORHOST}:%{POSINT}

# paths
PATH (?:%{UNIXPATH}|%{WINPATH})
UNIXPATH (/([\w_%!$@:.,+~-]+|\\.)*)+
TTY (?:/dev/(pts|tty([pq])?)(\w+)?/?(?:[0-9]+))
WINPATH (?>[A-Za-z]+:|\\)(?:\\[^\\?*]*)+
URIPROTO [A-Za-z]([A-Za-z0-9+\-.]+)+
URIHOST %{IPORHOST}(?::%{POSINT:port})?
# uripath comes loosely from RFC1738, but mostly from what Firefox
# doesn't turn into %XX
URIPATH (?:/[A-Za-z0-9$.+!*'(){},~:;=@#%&_\-]*)+
#URIPARAM \?(?:[A-Za-z0-9]+(?:=(?:[^&]*))?(?:&(?:[A-Za-z0-9]+(?:=(?:[^&]*))?)?)*)?
URIPARAM \?[A-Za-z0-9$.+!*'|(){},~@#%&/=:;_?\-\[\]<>]*
URIPATHPARAM %{URIPATH}(?:%{URIPARAM})?
URI %{URIPROTO}://(?:%{USER}(?::[^@]*)?@)?(?:%{URIHOST})?(?:%{URIPATHPARAM})?

# Months: January, Feb, 3, 03, 12, December
MONTH \b(?:[Jj]an(?:uary|uar)?|[Ff]eb(?:ruary|ruar)?|[Mm](?:a|ä)?r(?:ch|z)?|[Aa]pr(?:il)?|[Mm]a(?:y|i)?|[Jj]un(?:e|i)?|[Jj]ul(?:y)?|[Aa]ug(?:ust)?|[Ss]ep(?:tember)?|[Oo](?:c|k)?t(?:ober)?|[Nn]ov(?:ember)?|[Dd]e(?:c|z)(?:ember)?)\b
MONTHNUM (?:0?[1-9]|1[0-2])
MONTHNUM2 (?:0[1-9]|1[0-2])
MONTHDAY (?:(?:0[1-9])|(?:[12][0-9])|(?:3[01])|[1-9])

# Days: Monday, Tue, Thu, etc...
DAY (?:Mon(?:day)?|Tue(?:sday)?|Wed(?:nesday)?|Thu(?:rsday)?|Fri(?:day)?|Sat(?:urday)?|Sun(?:day)?)

# Years?
YEAR (?>\d\d){1,2}
HOUR (?:2[0123]|[01]?[0-9])
MINUTE (?:[0-5][0-9])
# '60' is a leap second in most time standards and thus is valid.
SECOND (?:(?:[0-5]?[0-9]|60)(?:[:.,][0-9]+)?)
TIME (?!<[0-9])%{HOUR}:%{MINUTE}(?::%{SECOND})(?![0-9])
# datestamp is YYYY/MM/DD-HH:MM:SS.UUUU (or something like it)
DATE_US %{MONTHNUM}[/-]%{MONTHDAY}[/-]%{YEAR}
DATE_EU %{MONTHDAY}[./-]%{MONTHNUM}[./-]%{YEAR}
ISO8601_TIMEZONE (?:Z|[+-]%{HOUR}(?::?%{MINUTE}))
ISO8601_SECOND (?:%{SECOND}|60)
TIMESTAMP_ISO8601 %{YEAR}-%{MONTHNUM}-%{MONTHDAY}[T ]%{HOUR}:?%{MINUTE}(?::?%{SECOND})?%{ISO8601_TIMEZONE}?
DATE %{DATE_US}|%{DATE_EU}
DATESTAMP %{DATE}[- ]%{TIME}
TZ (?:[APMCE][SD]T|UTC)
DATESTAMP_RFC822 %{DAY} %{MONTH} %{MONTHDAY} %{YEAR} %{TIME} %{TZ}
DATESTAMP_RFC2822 %{DAY}, %{MONTHDAY} %{MONTH} %{YEAR} %{TIME} %{ISO8601_TIMEZONE}
DATESTAMP_OTHER %{DAY} %{MONTH} %{MONTHDAY} %{TIME} %{TZ} %{YEAR}
DATESTAMP_EVENTLOG %{YEAR}%{MONTHNUM2}%{MONTHDAY}%{HOUR}%{MINUTE}%{SECOND}

# Syslog Dates: Month Day HH:MM:SS
SYSLOGTIMESTAMP %{MONTH} +%{MONTHDAY} %{TIME}
PROG [\x21-\x5a\x5c\x5e-\x7e]+
SYSLOGPROG %{PROG:program}(?:\[%{POSINT:pid}\])?
SYSLOGHOST %{IPORHOST}
SYSLOGFACILITY <%{NONNEGINT:facility}.%{NONNEGINT:priority}>
HTTPDATE %{MONTHDAY}/%{MONTH}/%{YEAR}:%{TIME} %{INT}

# Shortcuts
QS %{QUOTEDSTRING}

# Log formats
SYSLOGBASE %{SYSLOGTIMESTAMP:timestamp} (?:%{SYSLOGFACILITY} )?%{SYSLOGHOST:logsource} %{SYSLOGPROG}:

# Log Levels
LOGLEVEL ([Aa]lert|ALERT|[Tt]race|TRACE|[Dd]ebug|DEBUG|[Nn]otice|NOTICE|[Ii]nfo|INFO|[Ww]arn?(?:ing)?|WARN?(?:ING)?|[Ee]rr?(?:or)?|ERR?(?:OR)?|[Cc]rit?(?:ical)?|CRIT?(?:ICAL)?|[Ff]atal|FATAL|[Ss]evere|SEVERE|EMERG(?:ENCY)?|[Ee]merg(?:ency)?)

自定义表达式调用

语法:(?<field_name>pattern)
举例:捕获10或11和长度的十六进制数的queue_id可以使用表达式(?<queue_id>[0-9A-F]{10,11})

message: 192.168.80.10 GET /index.html 15824 0.043

(?<remote_addr>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) (?<http_method>[A-Z]+) (?<request_uri>/.*) (?<response_bytes>[0-9]+) (?<response_time>[0-9\.]+)

filter {
  grok {
    match => { "message" => "(?<remote_addr>%{IP}) (?<http_method>[A-Z]+) (?<request_uri>/.*) (?<response_bytes>[0-9]+) (?<response_time>[0-9\.]+)"}
  }
}

如果表达式匹配失败,会生成一个tags字段,字段值为 _grokparsefailure,需要重新检查上边的match配置解析是否正确。

 mutate 数据修改插件

它提供了丰富的基础类型数据处理能力。可以重命名,删除,替换和修改事件中的字段。

Mutate 过滤器常用的配置选项

add_field	        向事件添加新字段,也可以添加多个字段
remove_field        从事件中删除任意字段
add_tag	            向事件添加任意标签,在tag字段中添加一段自定义的内容,当tag字段中超过一个内容的时候会变成数组	
remove_tag	        从事件中删除标签(如果存在)
convert	            将字段值转换为另一种数据类型
id	                向现场事件添加唯一的ID
lowercase	        将字符串字段转换为其小写形式
replace	            用新值替换字段
strip	            删除开头和结尾的空格
uppercase	        将字符串字段转换为等效的大写字母
update	            用新值更新现有字段
rename	            重命名事件中的字段
gsub	            通过正则表达式替换字段中匹配到的值
merge	            合并数组或 hash 事件
split               通过指定的分隔符分割字段中的字符串为数组

示例:

●将字段old_field重命名为new_field
filter {
    mutate {
	    #写法1,使用中括号括起来
        rename => ["old_field" => "new_field"]

        #写法2,使用大括号{}括起来
	    rename => { "old_field" => "new_field" }		
    }
}


●添加字段
filter {
    mutate {
        add_field => {
        	"f1" => "field1"
        	"f2" => "field2"
        }
    }
}


●将字段删除
filter {
    mutate {
        remove_field  =>  ["message", "@version", "tags"]
    }
}


●将filedName1字段数据类型转换成string类型,filedName2字段数据类型转换成float类型
filter {
    mutate {
        #写法1,使用中括号括起来
        convert  =>  ["filedName1", "string"]
		
        #写法2,使用大括号{}括起来
		convert => { "filedName2" => "float" }
    }
}


●将filedName字段中所有"/“字符替换为”_"
filter {
    mutate {
        gsub => ["filedName", "/" , "_"]
    }
}


●将filedName字段中所有",“字符后面添加空格
filter {
    mutate {
        gsub => ["filedName", "," , ", "]
    }
}


●将filedName字段以"|"为分割符拆分数据成为数组
filter {
    mutate {
        split => ["filedName", "|"]
    }
}


●合并 “filedName1” 和 “ filedName2” 两个字段
filter {
    merge  { "filedName2" => "filedName1" }
}


●用新值替换filedName字段的值
filter {
    mutate {
        replace => { "filedName" => "new_value" }
    }
}


●添加字段first,值为message数组的第一个元素的值
filter {
    mutate {
        split => ["message", "|"]
        add_field => {
            "first" => "%{[message][0]}"    
        } 
    }
}


●有条件的添加标签
filter {
    #在日志文件路径包含 access 的条件下添加标签内容
    if [path] =~ "access" {
        mutate {
            add_tag => ["Nginx Access Log"]
        }
    }
    
    #在日志文件路径是 /var/log/nginx/error.log 的条件下添加标签内容
    if [path] == "/var/log/nginx/error.log" {
        mutate {
            add_tag => ["Nginx Error Log"]
        }
    }
}

 multiline 多行合并插件

java错误日志一般都是一条日志很多行的,会把堆栈信息打印出来,当经过 logstash 解析后,每一行都会当做一条记录存放到 ES, 那这种情况肯定是需要处理的。 这里就需要使用 multiline 插件,对属于同一个条日志的记录进行拼接。

2022-11-11 17:09:19.774[XNIo-1 task-1]ERROR com.passjava.controlle .NembercController-查询用户 活动数据失败,异常信息为:
    com.passjava.exception.MemberException: 当前没有配置活动规则
    at com.passjava.service.impL.queryAdmin(DailyServiceImpl.java:1444)
    at com.passjava.service.impl.dailyserviceImpL$$FastcLass
2022-11-11 17:10:56.256][KxNIo-1 task-1] ERROR com.passjava.controlle .NemberControl1er-查询员工 饭活动数据失败,异常信息为:
    com.passjava.exception.MemberException: 当前没有配置活动规则
    at com.passjava.service.impL.queryAdmin(DailyServiceImpl.java:1444)
    at com.passjava.service.impL.daiLyserviceImpL$$FastcLass

 安装 multiline 插件

在线安装插件
cd /usr/share/logstash
bin/logstash-plugin install logstash-filter-multiline

离线安装插件
先在有网的机器上在线安装插件,然后打包,拷贝到服务器,执行安装命令
bin/logstash-plugin prepare-offline-pack --overwrite --output logstash-filter-multiline.zip logstash-filter-multiline

bin/logstash-plugin install file:///usr/share/logstash/logstash-filter-multiline.zip

检查下插件是否安装成功,可以执行以下命令查看插件列表
bin/logstash-plugin list

 使用 multiline 插件

第一步:每一条日志的第一行开头都是一个时间,可以用时间的正则表达式匹配到第一行。
第二步:然后将后面每一行的日志与第一行合并。
第三步:当遇到某一行的开头是可以匹配正则表达式的时间的,就停止第一条日志的合并,开始合并第二条日志。
第四步:重复第二步和第三步。

 

●pattern:用来匹配文本的表达式,也可以是grok表达式

●what:如果pattern匹配成功的话,那么匹配行是归属于上一个事件,还是归属于下一个事件。previous: 归属于上一个事件,向上合并。next: 归属于下一个事件,向下合并

●negate:是否对pattern的结果取反。false:不取反,是默认值。true:取反。将多行事件扫描过程中的行匹配逻辑取反(如果pattern匹配失败,则认为当前行是多行事件的组成部分)
 

date 时间处理插件

用于分析字段中的日期,然后使用该日期或时间戳作为事件的logstash时间戳。

在Logstash产生了一个Event对象的时候,会给该Event设置一个时间,字段为“@timestamp”,同时,我们的日志内容一般也会有时间,但是这两个时间是不一样的,因为日志内容的时间是该日志打印出来的时间,而“@timestamp”字段的时间是input插件接收到了一条数据并创建Event的时间,所有一般来说的话“@timestamp”的时间要比日志内容的时间晚一点,因为Logstash监控数据变化,数据输入,创建Event导致的时间延迟。这两个时间都可以使用,具体要根据自己的需求来定。
 

现在我们想转换时间,那就要写出"dd/MMM/yyyy:HH:mm:ss Z"
你发现中间有三个M,你要是写出两个就不行了,因为两个大写的M表示两位数字的月份,可是我们要解析的文本中,月份则是使用简写的英文,所以只能去找三个M。还有最后为什么要加上个大写字母Z,因为要解析的文本中含有“+0800”时区偏移,因此我们要加上去,否则filter就不能正确解析文本数据,从而转换时间戳失败。

filter{
      grok{
           match => {"message" => ".* -\ -\ \[%{HTTPDATE:timestamp}\]"}
      }
      date{
           match => ["timestamp","dd/MMM/yyyy:HH:mm:ss Z"]
    }
}

运行结果:
{
          "host" => "localhost",
     "timestamp" => "07/Feb/2022:16:24:19 +0800",
    "@timestamp" => 2022-02-07T08:24:19.000Z,
       "message" => "192.168.80.10 - - [07/Feb/2022:16:24:19 +0800] \"GET /HTTP/1.1\" 403 5039",
      "@version" => "1"
}

在上面那段rubydebug编码格式的输出中,@timestamp字段虽然已经获取了timestamp字段的时间,但是仍然比北京时间晚了8个小时,这是因为在Elasticsearch内部,对时间类型字段都是统一采用UTC时间,而日志统一采用UTC时间存储,是国际安全、运维界的一个共识。其实这并不影响什么,因为ELK已经给出了解决方案,那就是在Kibana平台上,程序会自动读取浏览器的当前时区,然后在web页面自动将UTC时间转换为当前时区的时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/746759.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【深度学习】梳理一下概念和术语

1 说明 您是深度学习的新手,正在寻找全面的指南来帮助您了解基础知识及其他方面吗?不要再看了!在本文中,我们将深入研究 20 个基本的深度学习概念,从基础知识开始,逐渐转向更高级的主题。从人工神经网络(ANN)到梯度下降和激活函数(Sigmoid,ReLU,SoftMax),我们将探…

Pytorch 安装与配置

Pytorch 安装与配置 NVIDIA系统管理界面查看 nvidia-smi 进入NVIDIA系统管理界面 对应的详细解释看下图 参考博文 (53条消息) nvidia-smi命令详解和一些高阶技巧介绍_Chaos_Wang_的博客-CSDN博客 CUDA 查看 CUDA 有两类&#xff1a;其中一类是驱动API(Driver API)&#xff…

「深度学习之优化算法」(十二)水波算法

1. 水波算法简介 (以下描述,均不是学术用语,仅供大家快乐的阅读)   水波算法(Water wave optimization)是根据水波理论提出的优化算法。什么是水波理论?简单来说就是水波的宽度越小,其频率越高,频率与水波宽度的平方根成反比(具体细节我也不懂,物理方面的)。水波…

换零钱II:Python代码解Java题目

银行现存零钱面值种类动态变化但数量无限&#xff0c;类方法change()完成指定金额的最少零钱个数兑换。 (本笔记适合学透python基本数据结构&#xff0c;熟悉class的基构造&#xff0c;对类内全局变量有一定认的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1…

Mysql——》慢查询日志

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

TCR中的缓存和共享属性与PTE中的缓存和共享属性的区别是啥?

那么就请继续思考&#xff1a; Translation Table Walk访问页表的缓存策略&#xff0c;这里的页表到底是缓存到cache中&#xff0c;还是缓存到PTW中呢&#xff1f;

使用腾讯云轻量应用服务器搭建网站教程

腾讯云轻量应用服务器怎么搭建网站&#xff1f;太简单了&#xff0c;轻量服务器选择宝塔Linux镜像&#xff0c;然后在宝塔面板上添加站点&#xff0c;以WordPress建站为例&#xff0c;腾讯云服务器网来详细说下腾讯云轻量应用服务器搭建网站全流程&#xff0c;包括轻量服务器配…

【Elasticsearch】ES精确查询和范围查询,ES时间字段排序实例,ES倒排索引介绍

本文ES版本是7.X以上&#xff0c;之前的版本语法可能会有些差异&#xff0c;请注意这些比较重要的细节。问海量数据搜索时为什么ES会比较快&#xff1f; 精确查询 termQuery BoolQueryBuilder boolQuery QueryBuilders.boolQuery();boolQuery.must(QueryBuilders.termQuery(…

ORB-SLAM2学习笔记2之TUM开源数据运行ORB-SLAM2生成轨迹并用evo工具评估轨迹

文章目录 0 引言1 evo工具1.1 简介1.2 常用命令1.3 安装 2 TUM数据3 单目ORB-SLAM23.1 运行ORB-SLAM23.2 evo评估轨迹3.2.1 载入和对比轨迹3.2.2 计算绝对位姿误差 4 RGB-D ORB-SLAM24.1 运行ORB-SLAM24.2 evo评估轨迹4.2.1 载入和对比轨迹4.2.2 计算绝对轨迹误差 ORB-SLAM2学习…

软件工程——第12章面向对象实现知识点整理

本专栏是博主个人笔记&#xff0c;主要目的是利用碎片化的时间来记忆软工知识点&#xff0c;特此声明&#xff01; 文章目录 1. 面向对象语言技术的特点&#xff1f; 2.选择面向对象程序设计语言时主要应该考虑哪些因素&#xff1f; 3.面向对象设计结果只能用面向对象语言实…

第三方ipad电容笔哪个品牌好用?平板电容笔推荐

可能很多人都认为&#xff0c;苹果原装的电容笔&#xff0c;是不可取代&#xff0c;但我认为&#xff0c;这还要看个人的预算&#xff0c;以及实际的需求。苹果Pencil对于那些不太讲究画质的用户来说实在是太贵了&#xff0c;要是我们仅用于书写上&#xff0c;其实我们可以用平…

尚硅谷Docker实战教程-笔记13【高级篇,Docker轻量级可视化工具Portainer】

尚硅谷大数据技术-教程-学习路线-笔记汇总表【课程资料下载】视频地址&#xff1a;尚硅谷Docker实战教程&#xff08;docker教程天花板&#xff09;_哔哩哔哩_bilibili 尚硅谷Docker实战教程-笔记01【基础篇&#xff0c;Docker理念简介、官网介绍、平台入门图解、平台架构图解】…

Python 自学 day01 变量,变量命名规则,一些语法

1. Python 的变量的知识 1.1 Python 编程命令的读取时从上到下的。 1.2 Python 变量的命名规则&#xff1a; 1.2.1变量名只能包含字母、数字和下划线。变量名能以字母或下划线打头&#xff0c;但不能以数字打 头。例如&#xff0c;可将变量命名为message…

BATJ 面试 Java 岗:精选 1200+ 面试题及答案

Z 认为&#xff0c;对于 Java 面试以及进阶的最佳学习方法莫过于刷题博客书籍总结&#xff0c;前三者 LZ 将淋漓尽致地挥毫于这篇文章中&#xff0c;至于总结在于个人&#xff0c;实际上越到后面你会发现面试并不难&#xff0c;其次就是在刷题的过程中有没有去思考&#xff0c;…

网络安全(黑客技术)自学路线笔记

一、什么是黑客&#xff1f; 黑客泛指IT技术主攻渗透窃取攻击技术的电脑高手&#xff0c;现阶段黑客所需要掌握的远远不止这些。 二、为什么要学习黑客技术&#xff1f; 其实&#xff0c;网络信息空间安全已经成为海陆空之外的第四大战场&#xff0c;除了国与国之间的博弈&am…

stm32 mpu6050 cubemx 卡尔曼滤波法读取角度

文章目录 前言一、cubemx配置二、mpu6050文件移植mpu6050.cmpu6050.h 三、主函数 前言 本文简述使用mpu6050读取原始数据后解算出角度。 网上大多都是dmp库来解算&#xff0c;但是这种情况操作起来相对复杂。 更方便的方法是使用卡尔曼滤波法来解算出角度&#xff0c;好处是代…

2023网络安全常见面试题汇总(附答案解析+配套资料)

以下为网络安全各个方向涉及的面试题&#xff0c;星数越多代表问题出现的几率越大&#xff0c;祝各位都能找到满意的工作。 注&#xff1a;所有的资料都整理成了PDF&#xff0c;面试题和答案将会持续更新&#xff0c;因为无论如何也不可能覆盖所有的面试题。 目录 一、渗透测试…

ELK 企业级日志分析系统(三)

ELK 一、Zookeeper理论部分zookeeper的定义与工作机制zookeeper的特点Zookeeper 数据结构Zookeeper 应用场景Zookeeper 选举机制 二、zookeeper部署实验三、Kafka消息队列为什么需要消息队列&#xff08;MQ&#xff09;使用消息队列的好处消息队列的两种模式 Kafka 定义Kafka 简…

layui树形菜单的实现

前言 继续上一篇博客的内容&#xff0c;在原来代码的基础上实现树形菜单功能 一. 树形菜单是什么&#xff1f; 在layui中&#xff0c;树形菜单是通过 Tree 组件实现的。Tree 组件提供了一种树形结构展示数据的方式&#xff0c;常用于显示层级结构的菜单、目录等。开发者可以…

虚拟机中安装RabbitMQ及使用(超详细)

目录 1. 安装Socat 2. 安装Erlang 3. 安装RabbitMQ 4. 开启管理界面及配置 5. 启动 6. 配置虚拟主机及用户 6.1. 用户角色 6.2. Virtual Hosts配置 6.2.1. 创建Virtual Hosts 6.2.2. 设置Virtual Hosts权限 1. 安装Socat 在线安装依赖环境&#xff1a; yum install g…