LBFGS
pytorch的LBFGS也是一个优化器
但是与一般的优化器不同
平常我们的顺序是
loss=criterion(predict, gt)
optim.zero_grad()
loss.backward()
optim.step()
而LBFGS是
def closure():
optim.zero_grad()
loss = criterion(predict, gt)
loss.backward()
return loss
optim.step(closure)
例子
考虑
f
(
x
,
y
)
=
(
1
−
x
)
2
+
100
(
y
−
x
2
)
2
f\left(x,y\right) = \left(1-x\right)^2 +100\left(y - x^2\right)^2
f(x,y)=(1−x)2+100(y−x2)2
这是一个非凸的函数,
f
(
x
,
y
)
≥
f
(
1
,
1
)
=
0
f\left(x,y\right)\ge f\left(1,1\right)=0
f(x,y)≥f(1,1)=0
#!/usr/bin/env python
# _*_ coding:utf-8 _*_
import torch
from torch import optim
import matplotlib.pyplot as plt
# 2d Rosenbrock function
def f(x):
return (1 - x[0]) ** 2 + 100 * (x[1] - x[0] ** 2) ** 2
# Gradient descent
x_gd = 10 * torch.ones(2, 1)
x_gd.requires_grad = True
gd = optim.SGD([x_gd], lr=1e-5)
history_gd = []
for i in range(100):
gd.zero_grad()
objective = f(x_gd)
objective.backward()
gd.step()
history_gd.append(objective.item())
# L-BFGS
def closure():
lbfgs.zero_grad()
objective = f(x_lbfgs)
objective.backward()
return objective
x_lbfgs = 10 * torch.ones(2, 1)
x_lbfgs.requires_grad = True
lbfgs = optim.LBFGS([x_lbfgs],
history_size=10,
max_iter=4,
line_search_fn="strong_wolfe")
history_lbfgs = []
for i in range(100):
history_lbfgs.append(f(x_lbfgs).item())
lbfgs.step(closure)
# Plotting
plt.semilogy(history_gd, label='GD')
plt.semilogy(history_lbfgs, label='L-BFGS')
plt.legend()
plt.show()
运行结果
图是当前的函数值
可以看出L-BFGS的结果更好