二叉树层序遍历

news2024/11/15 11:18:18

目录

一、什么是层序遍历

二、层序遍历的实现

三、判断一棵树是否为完全二叉树

总结:


学习二叉树结构,最简单的就是遍历。

所谓二叉树遍历就是按照某种规则对二叉树中的节点进行相应操作,每个节点值操作一次。

遍历是二叉树的重要运算之一,也是二叉树进行其它运算的基础。

二叉树遍历有:前序遍历、中序遍历、后序遍历、层序遍历。本文即讨论层序遍历,掌握程序遍历的思路,写法以及简单应用。

一、什么是层序遍历

设根所在的节点层数为1,层序遍历就是从二叉树的根节点出发,首先访问第一层的根节点,然后从左到右访问第2层节点,接着第三层,直到访问全部节点。这一自上而下,自左向右的访问方式就叫层序遍历。

图解:

这颗二叉树的层序遍历为:
A->B->C->D->E->F->G->H->I

二、层序遍历的实现

方法:
根节点出队列,带左右孩子入队列

图解:

 层序遍历,需要借助队列数据结构,先把根节点入队列,依次出队列,每次出一个数据,就带节点的孩子入队列(先入左孩子,后入右节点),直到全部节点出过队列,队列为空,循坏结束。

层序遍历完成。

代码实现:

void BinaryTreeLevelOrder(BTNode* root)
{
	Queue qu;
	BTNode * cur;

	QueueInit(&qu);

	QueuePush(&qu, root);  //入根节点

	while (!QueueIsEmpty(&qu))  //队列不为空,重复出队列,入队列
	{
		cur = QueueTop(&qu);

		putchar(cur->_data);

		if (cur->_left)    //入孩子
		{
			QueuePush(&qu, cur->_left);
		}

		if (cur->_right)
		{
			QueuePush(&qu, cur->_right);
		}

		QueuePop(&qu);   //头删,出队列
	}

	QueueDestory(&qu);
}

三、判断一棵树是否为完全二叉树

1.完全二叉树

完全二叉树:

第K层从左到右,无空缺节点。 

满二叉树是完全二叉树的一种特殊情况

 

2.判断?

判断是否为完全二叉树,利用完全二叉树的定义,中途没有孤立的孩子节点。

思路:

利用层序遍历的思路

入队列---->出队列......带孩子入队列----> 1.遇到为空的孩子 2.队列为空  ---->停下 

队列不为空——非完全二叉树

队列为空——是完全二叉树

图解:

 

代码实现:

bool BinaryTreeComplete(BTNode* root)
{
	Queue q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);

		if (front == NULL)  //遇到空节点 1.结束 2.不是完全二叉树
			break;
		QueuePop(&q);

		QueuePush(&q, front->left);
		QueuePush(&q, front->right);
	}

	while (!QueueEmpty(&q))  //结束则为完全二叉树,否则不是
	{
		if (QueueFront(&q))
		{
			return false;
		}
		QueuePop(&q);
	}
	return true;

}

总结:

本文介绍二叉树的层序遍历,层序遍历是一种较为特别的遍历方式,有它独特的用处。

另外介绍了完全二叉树的判断方法。即出队列,入队列的层序遍历,再加上简单的判断

作者知识有限,希望能给大家带来一点帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/739608.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入篇【C++】手搓模拟实现string类(详细剖析常见的各接口):【400行代码实现】

深入篇【C】手搓模拟实现string类(包含常见的各接口):【400行代码实现】 【string类模拟实现完整代码】Ⅰ.构造/析构1.string()2.operator3.~string() Ⅱ.访问遍历1.operator[]2.iterator3.范围for Ⅲ.增操作1.push_back()2.append()3.operator4.insert(…

Harbor未授权创建管理员

人处在幸福与不幸交织的矛盾之中,反而使内心有一种更为深刻的痛苦,看来近在眼前的幸福而实际上又远得相当渺茫,海市蜃楼。放不得抓不住。 漏洞描述 近日,镜像仓库Harbor爆出任意管理员注册漏洞,攻击者在请求中构造特…

eNSP-VLAN多端口成员模式+DHCP

VLAN多端口成员模式DHCP 文章目录 VLAN多端口成员模式DHCP一、题目要求二、题目分析三、拓扑结构四、基本配置五、测试验证1.网段测试2.访问测试 一、题目要求 1、PC1和pc3所在接口为Access接口,PC2/4/5/6处于同一网段,其中PC2可以访问PC4/5/6&#xff…

Webkit内核探究——Webkit CSS实现

文章目录 前言1、CSS是什么2、CSS实现模型3、CSS默认样式表4、CSS解析5、CSS如何作用于Render Tree 前言 CSS在Webkit中的实现属于相对独立的一个模块,注意这里说的是相对。 CSS在Webkit中的作用自然是不言而喻的,在Web早期,文档的结构和样…

【运维工程师学习五】数据库

【运维工程师学习五】数据库 1、常用的关系型数据库2、C/S结构3、MariaDB图形客户端4、安装MariaDB5、启动MariaDB及验证启动是否成功6、验证启动——端口7、验证启动——进程8、MariaDB配置文件路径主配置文件解读: 9、MariaDB的配置选项10、MariaDB客户端连接1、在…

Windows下 Oracle 12c 安装保姆级图文详解

Windows下 Oracle 12c 安装步骤如下: 1、将压缩包“winx64_12c_database_1of2.zip“和“winx64_12c_database_2of2.zip”解压到同一目录“database”目录。 2、双击“database”目录下的“setup.exe",软件会加载并初步校验系统是否可以达到了数据…

华为云出品《深入理解高并发编程:Java线程池核心技术》电子书发布

系统拆解线程池核心源码的开源小册 透过源码看清线程池背后的设计和思路 详细解析AQS并发工具类 点击下方链接进入官网,右上角搜索框搜索“《深入理解高并发编程:Java线程池核心技术》” 即可获取下载。 https://auth.huaweicloud.com/authui/login…

01-线性表 (数据结构和算法)

要点: 程序 数据结构 算法 一、数据结构的概述 程序 数据结构 算法 数据结构:计算机存储、组织数据的方式 算法:处理数据的方式 1.1 基本概念和术语 1、数据 数据(data):所有能够输入到计算机中…

【Method】稀疏与压缩感知 | 图像稀疏性及压缩感知方法白话讲解

【Method】稀疏与压缩感知 | 图像稀疏性及压缩感知方法白话讲解 文章目录 【Method】稀疏与压缩感知 | 图像稀疏性及压缩感知方法白话讲解1. 为什么图像是可压缩的:图像空间的广阔2. 什么是Sparsity?3.压缩感知:简介4.压缩感知:数…

matlab学习指南(3):最全MATLAB工具箱Toolbox下载地址大汇总

🌅*🔹** φ(゜▽゜*)♪ **🔹*🌅 欢迎来到馒头侠的博客,该类目主要讲数学建模的知识,大家一起学习,联系最后的横幅! 喜欢的朋友可以关注下,私信下次更新不迷路&#xff0…

火车头采集器AI伪原创【php源码】

本文介绍火车头采集器AI伪原创,对于新媒体从业者来说,会写文章是最基本的职业技能,而伪原创是我们经常使用的技能。今天我要讲的是SEO标兵如何在伪原创上创作文章。 首先,原创性永远是最好的,更受读者欢迎。伪原创的出…

Microsoft Dynamics 365:VS2019引用BC发布的SOAP服务

1、搜索网页服务 2、点击新建 3、选择对象类型:页面、单元、查询,输入ID,勾选即可发布服务 4、复制SOAP URL到浏览器里看看是否可以访问,这样就OK的 5、 右键添加服务引用 6、选择高级 7、添加web引用 8、服务地址粘贴进去查找服…

云原生监控——VictoriaMetrics

1.简介 VictoriaMetrics是一个快速高效且可扩展的监控解决方案和时序数据库,可以作为Prometheus的长期远端存储,具备的特性有: 支持prometheus查询api,同时实现了一个metricsql 查询语言支持全局查询视图,支持多prom…

uniapp引用leaflet地图实现方案

最近在做uniapp实现的移动端app,其中一些模块需要gis地图,在最开始的时候我尝试了使用uniapp官方自带的map组件,但是非常不好用。 后来又引用了mars2d来实现,但是发现这种引用方式会出现一个bug,在浏览器当中使用的时候…

Blueprint —— 入门笔记

蓝图比C性能较慢; 蓝图起作用需在场景中创建实例; 在Event Graph内 按住右键,平移界面;滚动滚轮,缩放界面;按住左键节点,移动节点;右击,显示节点对话框;按住…

外部存储器接口(EMIF)

1 接口信号与控制寄存器 EMIF(External Memory Interface)外部存储器接口为DSP芯片与众多外部设备之间提供一种连接方式,EMIF最常见的用途就是同时连接FLASH和SDRAM。EMIF性能优良,跟外部SDRAM和异步器件连接时,具有很大的方便性和灵活性。根…

ModaHub魔搭社区:常用的相似性度量——浮点向量相似性度量和二进制向量相似性度量

目录 常用的相似性度量 浮点向量相似性度量 二进制向量相似性度量 总结 常用的相似性度量 如果没有相似性度量——计算两个向量之间距离的方法,再好的向量数据库也没有用。因为存在许多度量,我们在这里只讨论最常用的子集。 浮点向量相似性度量 最常见的浮点向量相似…

【数据分析 - 基础入门之pandas篇①】- pandas介绍

文章目录 前言一、pandas介绍二、pandas优势2.1 强大的数据结构支撑2.2 优点 三、pandas学习路线结语相关导读 前言 一、pandas介绍 pandas 是 Python 的 核心数据分析支持库 ,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据…

【JUC进阶】11. BlockingQueue

目录 1、前言 2、BlockingQueue 2.1、ArrayBlockingQueue 2.1.1、take() 2.1.2、put() 2.2、LinkedBlockingQueue 2.3、PriorityBlockingQueue 2.4、SynchronousQueue 3、简单使用 3.1、创建ArrayBlockingQueue 3.2、Demo 1、前言 对于并发程序而言,高性…

python: FileHelper

# encoding: utf-8 # 版权所有 2023 涂聚文有限公司 # 许可信息查看: # 描述: # Author : geovindu,Geovin Du 涂聚文. # IDE : PyCharm 2023.1 python 311 # Datetime : 2023/7/9 19:12 # User : geovindu # Product : PyCharm # Proj…