设计模式介绍
简介
设计模式是对软件设计中普遍存在(反复出现) 的各种问题,所提出的解决方案。
为什么学习设计模式
- 软件要做大,要先进行设计,才能保证其有高的稳定性、扩展性(容易按照新的需求添加功能)、复用性(相同功能的代码,不用多次编写)、规范性、可读性(其他程序员更容易看懂项目的代码)、可维护性、内聚性、灵活性、可靠性(添加新的功能后,对原来的功能没有影响),降低耦合性
- 工作招聘要求越来越高(问你概念,在项目中用过哪些设计模式,怎么用的)
- 如果想要成为合格的软件工程师,学习设计模式很有必要
- 合理使用设计模式,写出来的代码不但结构清晰,有时候效率也会更高
- 在网站开发中,框架的源码会使用设计模式实现,在写业务代码实现功能的时候,也需要使用到设计模式
七大设计原则介绍
单一职责原则(Single Responsibility Principle)
介绍
一个类只负责一项职责(一项职责并非一个职责,如订单的所有操作叫一项职责;关于商品的操作又是另外一项职责),不然修改其中一项的代码,有可能影响其他的职责
作用
- 降低类的复杂度
- 提高类的可读性,可维护性
- 降低变更引起的风险
- 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则; 只有类中方法数量足够少,可以在方法级别保持单一职责原则
案例
原始实现
package com.atguigu.principle.singleresponsibility;
public class SingleResponsibility1 {
public static void main(String[] args) {
Vehicle vehicle = new Vehicle();
vehicle.run("摩托车");
vehicle.run("汽车");
vehicle.run("飞机");
}
}
// 交通工具类
class Vehicle {
public void run(String vehicle) {
System.out.println(vehicle + " 在公路上运行....");
}
}
【运行结果】
摩托车 在公路上运行....
汽车 在公路上运行....
飞机 在公路上运行....
Process finished with exit code 0
【分析】 1. 在Vehicle的run方法中,违反了单一职责原则,飞机不应该在公路上跑 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
改进一
package com.atguigu.principle.singleresponsibility;
public class SingleResponsibility2 {
public static void main(String[] args) {
RoadVehicle roadVehicle = new RoadVehicle();
roadVehicle.run("摩托车");
roadVehicle.run("汽车");
AirVehicle airVehicle = new AirVehicle();
airVehicle.run("飞机");
}
}
class RoadVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "公路运行");
}
}
class AirVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "天空运行");
}
}
class WaterVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "水中运行");
}
}
【分析】
- 遵守单一职责原则
- 但是这样做的改动很大,即将类分解,同时修改客户端(方法调用端)
【改进】
- 直接修改Vehicle 类,改动的代码会比较少
改进二
package com.atguigu.principle.singleresponsibility;
public class SingleResponsibility3 {
public static void main(String[] args) {
Vehicle2 vehicle2 = new Vehicle2();
vehicle2.run("汽车");
vehicle2.runWater("轮船");
vehicle2.runAir("飞机");
}
}
//方式3的分析
//1. 这种修改方法没有对原来的类做大的修改,只是增加方法
//2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
class Vehicle2 {
public void run(String vehicle) {
//可以增加其他处理,不影响其他方法
System.out.println(vehicle + " 在公路上运行....");
}
public void runAir(String vehicle) {
System.out.println(vehicle + " 在天空上运行....");
}
public void runWater(String vehicle) {
System.out.println(vehicle + " 在水中行....");
}
}
【分析】
- 这种修改方法没有对原来的类做大的修改,只是增加方法
- 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责( 只有类中方法数量足够少,可以在方法级别保持单一职责原则,如果方法多了,建议还是拆分成多个类)
接口隔离原则(Interface Segregation Principle)
介绍
客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口(拆到最小,依赖的时候每个方法都用得上)上
案例
原始实现
B、D是实现类,A、C使用B、D实现的方法
package com.atguigu.principle.segregation;
public class Segregation1 {
public static void main(String[] args) {
}
}
//接口
interface Interface1 {
void operation1();
void operation2();
void operation3();
void operation4();
void operation5();
}
class B implements Interface1 {
public void operation1() {
System.out.println("B 实现了 operation1");
}
public void operation2() {
System.out.println("B 实现了 operation2");
}
public void operation3() {
System.out.println("B 实现了 operation3");
}
public void operation4() {
System.out.println("B 实现了 operation4");
}
public void operation5() {
System.out.println("B 实现了 operation5");
}
}
class D implements Interface1 {
public void operation1() {
System.out.println("D 实现了 operation1");
}
public void operation2() {
System.out.println("D 实现了 operation2");
}
public void operation3() {
System.out.println("D 实现了 operation3");
}
public void operation4() {
System.out.println("D 实现了 operation4");
}
public void operation5() {
System.out.println("D 实现了 operation5");
}
}
class A { //A 类通过接口Interface1 依赖(使用) B类,但是只会用到1,2,3方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend2(Interface1 i) {
i.operation2();
}
public void depend3(Interface1 i) {
i.operation3();
}
}
class C { //C 类通过接口Interface1 依赖(使用) D类,但是只会用到1,4,5方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend4(Interface1 i) {
i.operation4();
}
public void depend5(Interface1 i) {
i.operation5();
}
}
【分析】
- 类A通过接口Interface1依赖类B,类c通过接口Interface1依赖类D,如果接口Interface1对于类A和类C来说不是最小接口,那么类B和类D必须去实现他们不需要的方法
- 将接口Interface1拆分为独立的几个接口,类A和类C分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则
- 接口interface1中出现的方法,根据实际情况拆分为三个接口
改进
package com.atguigu.principle.segregation.improve;
public class Segregation1 {
public static void main(String[] args) {
// 使用一把
A a = new A();
a.depend1(new B()); // A类通过接口去依赖B类
a.depend2(new B());
a.depend3(new B());
C c = new C();
c.depend1(new D()); // C类通过接口去依赖(使用)D类
c.depend4(new D());
c.depend5(new D());
}
}
// 接口1
interface Interface1 {
void operation1();
}
// 接口2
interface Interface2 {
void operation2();
void operation3();
}
// 接口3
interface Interface3 {
void operation4();
void operation5();
}
class B implements Interface1, Interface2 {
public void operation1() {
System.out.println("B 实现了 operation1");
}
public void operation2() {
System.out.println("B 实现了 operation2");
}
public void operation3() {
System.out.println("B 实现了 operation3");
}
}
class D implements Interface1, Interface3 {
public void operation1() {
System.out.println("D 实现了 operation1");
}
public void operation4() {
System.out.println("D 实现了 operation4");
}
public void operation5() {
System.out.println("D 实现了 operation5");
}
}
class A { // A 类通过接口Interface1,Interface2 依赖(使用) B类,但是只会用到1,2,3方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend2(Interface2 i) {
i.operation2();
}
public void depend3(Interface2 i) {
i.operation3();
}
}
class C { // C 类通过接口Interface1,Interface3 依赖(使用) D类,但是只会用到1,4,5方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend4(Interface3 i) {
i.operation4();
}
public void depend5(Interface3 i) {
i.operation5();
}
}
依赖倒转(倒置)原则(Dependence Inversion Principle)
介绍
- 高层模块不应该依赖低层模块,二者都应该依赖其抽象(指抽象类/接口)
- 抽象不应该依赖细节,细节应该依赖抽象
- 依赖倒转(倒置)的中心思想是
面向接口编程
- 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架构比以细节为基础的架构要稳定的多。在iava中,
抽象指的是接口或抽象类
,细节就是具体的实现类
- 使用接口或抽象类的目的是制定好规范(声明方法,不实现),而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成(让实现类实现方法)
案例
原始实现
package com.atguigu.principle.inversion;
public class DependecyInversion {
public static void main(String[] args) {
Person person = new Person();
person.receive(new Email());
}
}
class Email {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//完成Person接收消息的功能
class Person {
// 直接依赖具体的类
public void receive(Email email) {
System.out.println(email.getInfo());
}
}
【分析】
- 优点:简单,比较容易想到
- 缺点:如果我们获取的对象是 微信,短信等等,则需要新增类,同时Person也要增加相应的接收方法
【改进】
引入一个抽象的接口IReceiver, 表示接收者, 这样Person类与接口IReceiver发生依赖 因为Email, WeiXin 等等属于接收的范围,他们各自实现IReceiver 接口就ok, 这样我们就符合依赖倒转原则
改进
package com.atguigu.principle.inversion.improve;
public class DependecyInversion {
public static void main(String[] args) {
//客户端无需改变
Person person = new Person();
person.receive(new Email());
person.receive(new WeiXin());
}
}
//定义接口
interface IReceiver {
public String getInfo();
}
class Email implements IReceiver {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//增加微信
class WeiXin implements IReceiver {
public String getInfo() {
return "微信信息: hello,ok";
}
}
//方式2
class Person {
//改成依赖接口
public void receive(IReceiver receiver ) {
System.out.println(receiver.getInfo());
}
}
依赖传递的三种方式
package com.atguigu.principle.inversion.improve;
public class DependencyPass {
public static void main(String[] args) {
ChangHong changHong = new ChangHong();
OpenAndClose openAndClose = new OpenAndClose();
openAndClose.open(changHong);
}
}
// 方式1: 通过接口传递实现依赖
// 开关的接口
interface IOpenAndClose {
public void open(ITV tv); //抽象方法,接收接口
}
interface ITV { //ITV接口
public void play();
}
class ChangHong implements ITV {
@Override
public void play() {
System.out.println("长虹电视机,打开");
}
}
// 实现接口
class OpenAndClose implements IOpenAndClose {
public void open(ITV tv) {
tv.play();
}
}
package com.atguigu.principle.inversion.improve;
public class DependencyPass {
public static void main(String[] args) {
ChangHong changHong = new ChangHong();
//通过构造器进行依赖传递
OpenAndClose openAndClose = new OpenAndClose(changHong);
openAndClose.open();
}
}
// 方式2:通过构造方法依赖传递
interface IOpenAndClose {
public void open(); //抽象方法
}
interface ITV { //ITV接口
public void play();
}
class OpenAndClose implements IOpenAndClose {
public ITV tv; //成员
public OpenAndClose(ITV tv) { //构造器
this.tv = tv;
}
public void open() {
this.tv.play();
}
}
class ChangHong implements ITV {
@Override
public void play() {
System.out.println("长虹电视机,打开");
}
}
package com.atguigu.principle.inversion.improve;
public class DependencyPass {
public static void main(String[] args) {
ChangHong changHong = new ChangHong();
//通过setter方法进行依赖传递
OpenAndClose openAndClose = new OpenAndClose();
openAndClose.setTv(changHong);
openAndClose.open();
}
}
// 方式3,通过setter方法传递
interface IOpenAndClose {
public void open(); // 抽象方法
public void setTv(ITV tv);
}
interface ITV { // ITV接口
public void play();
}
class OpenAndClose implements IOpenAndClose {
private ITV tv;
public void setTv(ITV tv) {
this.tv = tv;
}
public void open() {
this.tv.play();
}
}
class ChangHong implements ITV {
@Override
public void play() {
System.out.println("长虹电视机,打开");
}
}
总结
- 低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好
- 变量的声明类型尽量是抽象类或接口,这样我们的变量引用和实际对象间,就存在一个缓冲层,利于程序扩展和优化。
这句话的意思是,使用抽象类或接口作为变量类型,可以降低代码的耦合度。通过引入抽象层,将具体的实现细节与变量引用分离开来。这样一来,当需要拓展或修改程序时,只需要修改具体实现类,而无需修改引用该变量的其他代码。 A obj1=new B(); 或者 A obj2=new C();
此外,还可以增强代码的扩展性。如果需要添加新的功能或实现,只需要实现相应的接口或继承相应的抽象类,并将其赋值给变量引用即可,无需修改原有代码。
最后,还可以方便地进行性能优化。通过更换具体实现类,可以根据实际需求选择不同的实现方式,从而达到最佳性能。
以下是一个具体的例子:
假设我们有一个形状类 Shape,它有一个抽象方法 getArea(),需要子类来实现具体的计算面积的方法,如圆形类 Circle 和矩形类 Rectangle。
如果我们要写一个计算图形面积的程序,可以这样声明变量:
Shape[] shapes = new Shape[2];
shapes[0] = new Circle(5); // 半径为 5 的圆形
shapes[1] = new Rectangle(3, 4); // 长为 3,宽为 4 的矩形
这里我们采用了 Shape 类作为变量类型,而不是具体的 Circle 或 Rectangle 类。这样做有以下好处:
降低代码耦合度:其他代码引用 shapes 数组时只需要知道它是 Shape 类型,不需要知道具体是哪个子类实现了它。
增强程序扩展性:如果我们要添加新的形状,只需要实现 Shape 的方法即可,而不需要修改其他代码。
方便性能优化:如果程序更偏向于计算圆形面积,我们可以使用更高效的圆形实现类来替换原有的 Circle 类,只需要修改创建 Circle 实例的代码即可,其他代码不需要做任何修改。
- 继承时遵循里氏替换原则
里氏替换原则
介绍
告诉我们继承需要注意什么问题
【使用继承会带来的问题】
- 继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有的子类必须遵循这些契约(子类可以重写父类已经实现的方法),但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏
- 继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性(如果一个类被其他的类所继承则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障)
- 如何正确的使用继承?答:需要遵守里氏替换原则
【里氏替换原则】
- 里氏替换原则(Liskov Substitution Principle)在1988年,由麻省理工学院的以为姓里的女士提出的
- 如果对每个类型为T1的对象o1,都有类型为T2的对象o2,使得以T1定义的所有程序P在所有的对象o1都代换成o2时,程序P的行为没有发生变化,那么类型T2是类型T1的子类型。换句话说,
所有引用基类(父类)的地方必须能透明地使用其子类的对象
(使用基类对象的任何地方,都可以替换为子类对象而不会影响代码的正确性。换句话说,基类对象的行为和子类对象的行为应该是一致的,不应该有任何差别。) - 在使用继承时,遵循里氏替换原则,
在子类中尽量不要重写父类的方法
(如果重写了,就不再透明,调用子类的方法和调用父类的方法不同) - 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,
可以通过聚合,组合,依赖来解决问题
案例
原始实现
package com.atguigu.principle.liskov;
public class Liskov {
public static void main(String[] args) {
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
//这里程序员的本意是求出11-3,忘记父类的方法被重写了
System.out.println("11-3=" + b.func1(11, 3));
System.out.println("1-8=" + b.func1(1, 8));// 1-8
System.out.println("11+3+9=" + b.func2(11, 3));
}
}
// A类
class A {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
//这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
}
【分析】
我们发现原来运行正常的相减功能发生了错误。原因就是类B无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,我们常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的复用性会比较差。特别是运行多态比较频繁的时候
【改进】
将原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等关系代替
改进
组合:B类还需要使用到A类的方法
package com.atguigu.principle.liskov.improve;
public class Liskov {
public static void main(String[] args) {
// TODO Auto-generated method stub
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
System.out.println("1+8=" + b.func1(1, 8));// 1+8
System.out.println("11+3+9=" + b.func2(11, 3));
//使用组合仍然可以使用到A类相关方法
System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3
}
}
//创建一个更加基础的基类
class Base {
//把更加基础的方法和成员写到Base类
}
// A类
class A extends Base {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
//如果B需要使用A类的方法,使用组合关系
private A a = new A();
//这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
//我们仍然想使用A的方法
public int func3(int a, int b) {
return this.a.func1(a, b);
}
}
【分析】
- 使用这种方式,降低了A和B之间的耦合度
- 因为B类不再继承A类,因此调用者,不会再认为func1是求减法,调用完成的功能就会很明确
开闭原则 (Open Closed Principle)
介绍
- 开闭原则是编程中最基础、最重要的设计原则
- 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)(后面要求提供方添加新的类时,使用方不需要修改)。
用抽象构建框架,用实现扩展细节
当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化
(当需要增加功能时,尽量是增加代码,而不是修改已有的代码)- 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则
案例
原始实现
package com.atguigu.principle.ocp;
public class Ocp {
public static void main(String[] args) {
//使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
}
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收Shape对象,然后根据type,来绘制不同的图形
public void drawShape(Shape s) {
if (s.m_type == 1)
drawRectangle(s);
else if (s.m_type == 2)
drawCircle(s);
else if (s.m_type == 3)
drawTriangle(s);
}
//绘制矩形
public void drawRectangle(Shape r) {
System.out.println(" 绘制矩形 ");
}
//绘制圆形
public void drawCircle(Shape r) {
System.out.println(" 绘制圆形 ");
}
//绘制三角形
public void drawTriangle(Shape r) {
System.out.println(" 绘制三角形 ");
}
}
//Shape类,基类
class Shape {
int m_type;
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
}
【分析】
- 优点是比较好理解,简单易操作
- 缺点是违反了设计模式的ocp原则,即对扩展开放,对修改关闭。即当我们给类增加新功能的时候,尽量不修改代码,或者尽可能少修改代码
- 比如我们这时要新增加一个三角形,我们需要做较多修改
【改进】
把创建Shape类做成抽象类,并提供一个抽象的draw方法,让子类去实现即可这样我们有新的图形种类时,只需要让新的图形类继承Shape,并实现draw方法即可,这样使用方的代码就不需要修 -> 满足了开闭原则
改进
package com.atguigu.principle.ocp.improve;
public class Ocp {
public static void main(String[] args) {
//使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
graphicEditor.drawShape(new OtherGraphic());
}
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收Shape对象,调用draw方法
public void drawShape(Shape s) {
s.draw();
}
}
//Shape类,基类
abstract class Shape {
int m_type;
public abstract void draw();//抽象方法
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
@Override
public void draw() {
System.out.println(" 绘制矩形 ");
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
@Override
public void draw() {
System.out.println(" 绘制圆形 ");
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
@Override
public void draw() {
System.out.println(" 绘制三角形 ");
}
}
//新增一个图形
class OtherGraphic extends Shape {
OtherGraphic() {
super.m_type = 4;
}
@Override
public void draw() {
System.out.println(" 绘制其它图形 ");
}
}
迪米特法则(Demeter Principle)
介绍
- 一个对象应该对其他对象保持最少的了解
- 类与类关系越密切,耦合度越大
- 迪米特法则又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的public 方法,不对外泄露任何信息。如A类依赖于B类,只需要关注B类的public方法就可以,其他地方怎么实现的不需要关心
- 迪米特法则还有个更简单的定义: 只与直接的朋友通信(直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们作为成员变量、方法参数、方法返回值中的类为直接的朋友,而出现在局部变量(方法里面)中的类不是直接的朋友,如B类是A类的一个成员变量,则B类是A类的直接朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部)
案例
原始实现
package com.atguigu.principle.demeter;
import java.util.ArrayList;
import java.util.List;
//客户端
public class Demeter1 {
public static void main(String[] args) {
//创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
//输出学院的员工id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//管理学院员工的管理类
class CollegeManager {
//返回学院的所有员工,临时创建十个员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工id= " + i);
list.add(emp);
}
return list;
}
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
//返回学校总部的员工,临时创建五个员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<Employee>();
for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
//分析问题
//1. 这里的 CollegeEmployee 不是 SchoolManager的直接朋友
//2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
//3. 违反了 迪米特法则
//获取到学院员工
List<CollegeEmployee> list1 = sub.getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
//获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
【运行结果】
------------学院员工------------
学院员工id= 0
学院员工id= 1
学院员工id= 2
学院员工id= 3
学院员工id= 4
学院员工id= 5
学院员工id= 6
学院员工id= 7
学院员工id= 8
学院员工id= 9
------------学校总部员工------------
学校总部员工id= 0
学校总部员工id= 1
学校总部员工id= 2
学校总部员工id= 3
学校总部员工id= 4
【分析】
分析 SchoolManager 类的直接朋友类有哪些
- 直接朋友类有 Employee、CollegeManager
- CollegeEmployee 不是
直接朋友
,CollegeEmployee 是以局部变量方式出现在 SchoolManager,这样违背了迪米特法则
【改进】
直接将这段代码放到CollegeManager类里面即可,不要在别人的类里面做你的事情,我只希望能调用你的public方法
//获取到学院员工
List<CollegeEmployee> list1 = getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
改进
package com.atguigu.principle.demeter.improve;
import java.util.ArrayList;
import java.util.List;
//客户端
public class Demeter1 {
public static void main(String[] args) {
System.out.println("~~~使用迪米特法则的改进~~~");
//创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
//输出学院的员工id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//管理学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工id= " + i);
list.add(emp);
}
return list;
}
//输出学院员工的信息
public void printEmployee() {
//获取到学院员工
List<CollegeEmployee> list1 = getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
}
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
//返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<Employee>();
for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
//分析问题
//1. 将输出学院的员工方法,封装到CollegeManager
sub.printEmployee();
//获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-drebZWDh-1688866346128)(assets/1688866036319-5.png)]
总结
- 迪米特法则的核心是降低类之间的耦合
- 由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系, 并不是要求完全没有依赖关系(只要A和B有关系,就会有依赖)
合成复用原则
介绍
尽量使用合成/聚合的方式,而不是使用继承
案例
【方案一】
如果想B类可以使用A类的方法,最简单的方式是,直接让B类继承A类,但是会出现如下问题
- B和A的耦合性较高
- A如果新增了方法,这个方法B不一定需要
【方案二:依赖】
【方案三:聚合】
【方案四:组合】
设计原则核心思想
- 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起
- 针对接口编程,而不是针对实现编程
- 为了交互对象之间的松耦合设计而努力