♥️作者:小刘在C站
♥️个人主页: 小刘主页
♥️努力不一定有回报,但一定会有收获加油!一起努力,共赴美好人生!
♥️学习两年总结出的运维经验,以及思科模拟器全套网络实验教程。专栏:云计算技术
♥️小刘私信可以随便问,只要会绝不吝啬,感谢CSDN让你我相遇!
目录
5.2.1 场景
5.2.2 准备
5.2.3 配置
1). schema.xml
2). server.xml
5.2.4 测试
5.3 分片规则
1). 介绍
2). 配置
5.3.2 取模分片
1). 介绍
2). 配置
3). 测试
5.3.3 一致性hash分片
1). 介绍
2). 配置
3). 测试
5.2
水平拆分
5.2.1 场景
在业务系统中
,
有一张表
(
日志表
),
业务系统每天都会产生大量的日志数据
,
单台服务器的数据存
储及处理能力是有限的
,
可以对数据库表进行拆分。
5.2.2 准备
准备三台服务器,具体的结构如下:
并且,在三台数据库服务器中分表创建一个数据库itcast。
5.2.3 配置
1). schema.xml
<schema name="ITCAST" checkSQLschema="true" sqlMaxLimit="100">
<table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" />
</schema>
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />
tb_log
表最终落在
3
个节点中,分别是
dn4
、
dn5
、
dn6
,而具体的数据分别存储在
dhost1
、
dhost2
、
dhost3
的
itcast
数据库中。
2). server.xml
配置
root
用户既可以访问
SHOPPING
逻辑库,又可以访问
ITCAST
逻辑库。
<user name="root" defaultAccount="true">
<property name="password">123456</property>
<property name="schemas">SHOPPING,ITCAST</property>
<!-- 表级 DML 权限设置 -->
<!--
<privileges check="true">
<schema name="DB01" dml="0110" >
<table name="TB_ORDER" dml="1110"></table>
</schema>
</privileges>
-->
</user>
5.2.4 测试
配置完毕后,重新启动
MyCat
,然后在
mycat
的命令行中,执行如下
SQL
创建表、并插入数据,查看数
据分布情况。
CREATE TABLE tb_log (
id bigint(20) NOT NULL COMMENT 'ID',
model_name varchar(200) DEFAULT NULL COMMENT '模块名',
model_value varchar(200) DEFAULT NULL COMMENT '模块值',
return_value varchar(200) DEFAULT NULL COMMENT '返回值',
return_class varchar(200) DEFAULT NULL COMMENT '返回值类型',
operate_user varchar(20) DEFAULT NULL COMMENT '操作用户',
operate_time varchar(20) DEFAULT NULL COMMENT '操作时间',
param_and_value varchar(500) DEFAULT NULL COMMENT '请求参数名及参数值',
operate_class varchar(200) DEFAULT NULL COMMENT '操作类',
operate_method varchar(200) DEFAULT NULL COMMENT '操作方法',
cost_time bigint(20) DEFAULT NULL COMMENT '执行方法耗时, 单位 ms',
source int(1) DEFAULT NULL COMMENT '来源 : 1 PC , 2 Android , 3 IOS',
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('1','user','insert','success','java.lang.String','10001','2022-01-06
18:12:28','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.contro
ller.UserController','insert','10',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('2','user','insert','success','java.lang.String','10001','2022-01-06
18:12:27','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.contro
ller.UserController','insert','23',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('3','user','update','success','java.lang.String','10001','2022-01-06
18:16:45','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.contro
ller.UserController','update','34',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('4','user','update','success','java.lang.String','10001','2022-01-06
18:16:45','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.contro
ller.UserController','update','13',2);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('5','user','insert','success','java.lang.String','10001','2022-01-06
18:30:31','{\"age\":\"200\",\"name\":\"TomCat\",\"gender\":\"0\"}','cn.itcast.co
ntroller.UserController','insert','29',3);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('6','user','find','success','java.lang.String','10001','2022-01-06
18:30:31','{\"age\":\"200\",\"name\":\"TomCat\",\"gender\":\"0\"}','cn.itcast.co
ntroller.UserController','find','29',2);
5.3 分片规则
5.3.1 范围分片
1). 介绍
根据指定的字段及其配置的范围与数据节点的对应情况, 来决定该数据属于哪一个分片。
2). 配置
schema.xml逻辑表配置:
<table name="TB_ORDER" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />
schema.xml数据节点配置:
<dataNode name="dn1" dataHost="dhost1" database="db01" />
<dataNode name="dn2" dataHost="dhost2" database="db01" />
<dataNode name="dn3" dataHost="dhost3" database="db01" />
rule.xml
分片规则配置:
<tableRule name="auto-sharding-long">
<rule>
<columns>id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>
分片规则配置属性含义:
在
rule.xml
中配置分片规则时,关联了一个映射配置文件
autopartition-long.txt
,该配置文
件的配置如下:
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
含义:
0-500
万之间的值,存储在
0
号数据节点
(
数据节点的索引从
0
开始
)
;
500
万
-1000
万之间的
数据存储在
1
号数据节点 ;
1000
万
-1500
万的数据节点存储在
2
号节点 ;
该分片规则,主要是针对于数字类型的字段适用。 在
MyCat
的入门程序中,我们使用的就是该分片规则。
5.3.2 取模分片
1). 介绍
根据指定的字段值与节点数量进行求模运算,根据运算结果, 来决定该数据属于哪一个分片。
2). 配置
schema.xml
逻辑表配置:
<table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" />
schema.xml
数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />
rule.xml
分片规则配置:
<tableRule name="mod-long">
<rule>
<columns>id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<property name="count">3</property>
</function>
分片规则属性说明如下:
该分片规则,主要是针对于数字类型的字段适用。 在前面水平拆分的演示中,我们选择的就是取模分片。
3). 测试
配置完毕后,重新启动
MyCat
,然后在
mycat
的命令行中,执行如下
SQL
创建表、并插入数据,查看数据分布情况。
5.3.3 一致性hash分片
1). 介绍
所谓一致性哈希,相同的哈希因子计算值总是被划分到相同的分区表中,不会因为分区节点的增加而改变原来数据的分区位置,有效的解决了分布式数据的拓容问题。
2). 配置
schema.xml
中逻辑表配置:
<!-- 一致性hash -->
<table name="tb_order" dataNode="dn4,dn5,dn6" rule="sharding-by-murmur" />
schema.xml
中数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />
rule.xml
中分片规则配置:
<tableRule name="sharding-by-murmur">
<rule>
<columns>id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是0 -->
<property name="count">3</property>
<property name="virtualBucketTimes">160</property>
</function>
分片规则属性含义:
3). 测试
配置完毕后,重新启动
MyCat
,然后在
mycat
的命令行中,执行如下
SQL
创建表、并插入数据,查看数
据分布情况。
create table tb_order(
id varchar(100) not null primary key,
money int null,
content varchar(200) null
);
INSERT INTO tb_order (id, money, content) VALUES ('b92fdaaf-6fc4-11ec-b831-
482ae33c4a2d', 10, 'b92fdaf8-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93482b6-6fc4-11ec-b831-
482ae33c4a2d', 20, 'b93482d5-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b937e246-6fc4-11ec-b831-
482ae33c4a2d', 50, 'b937e25d-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93be2dd-6fc4-11ec-b831-
482ae33c4a2d', 100, 'b93be2f9-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93f2d68-6fc4-11ec-b831-
482ae33c4a2d', 130, 'b93f2d7d-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9451b98-6fc4-11ec-b831-
482ae33c4a2d', 30, 'b9451bcc-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9488ec1-6fc4-11ec-b831-
482ae33c4a2d', 560, 'b9488edb-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b94be6e6-6fc4-11ec-b831-
482ae33c4a2d', 10, 'b94be6ff-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b94ee10d-6fc4-11ec-b831-
482ae33c4a2d', 123, 'b94ee12c-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b952492a-6fc4-11ec-b831-
482ae33c4a2d', 145, 'b9524945-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95553ac-6fc4-11ec-b831-
482ae33c4a2d', 543, 'b95553c8-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9581cdd-6fc4-11ec-b831-
482ae33c4a2d', 17, 'b9581cfa-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95afc0f-6fc4-11ec-b831-
482ae33c4a2d', 18, 'b95afc2a-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95daa99-6fc4-11ec-b831-
482ae33c4a2d', 134, 'b95daab2-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9667e3c-6fc4-11ec-b831-
482ae33c4a2d', 156, 'b9667e60-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b96ab489-6fc4-11ec-b831-
482ae33c4a2d', 175, 'b96ab4a5-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b96e2942-6fc4-11ec-b831-
482ae33c4a2d', 180, 'b96e295b-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b97092ec-6fc4-11ec-b831-
482ae33c4a2d', 123, 'b9709306-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b973727a-6fc4-11ec-b831-
482ae33c4a2d', 230, 'b9737293-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b978840f-6fc4-11ec-b831-
482ae33c4a2d', 560, 'b978843c-6fc4-11ec-b831-482ae33c4a2d');
♥️关注,就是我创作的动力
♥️点赞,就是对我最大的认可
♥️这里是小刘,励志用心做好每一篇文章,谢谢大家