基于深度学习的高精度球场足球检测识别系统(PyTorch+Pyside6+YOLOv5模型)

news2024/11/15 15:43:51

摘要:基于深度学习的高精度球场足球检测识别系统可用于日常生活中或野外来检测与定位球场足球目标,利用深度学习算法可实现图片、视频、摄像头等方式的球场足球目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括球场足球训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本球场足球检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度球场足球识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。

在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的球场足球数据集手动标注了球场足球这一个类别,数据集总计9333张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的球场足球检测识别数据集包含训练集7969张图片,验证集686张图片,测试集678张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的球场足球数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对球场足球数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/731620.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

什么是操作系统

操作系统(Operating System) 什么是操作系统 操作系统是一组做计算机资源管理的软件的统称。目前常见的操作系统有:Windows系列、Unix系列、Linux系列、OSX系列、Android系列、iOS系列、鸿蒙等 操作系统的定位 操作系统的基本功能 操作系统由…

【报告】从GLM-130B到ChatGLM:大模型预训练与微调学习记录

本文主要是记录《【报告】从GLM-130B到ChatGLM:大模型预训练与微调》此次讲座的汇报内容,如有不适请联系删除即可,总结记录内容纯粹为了后面学习使用方便,文档性质的资料还是要比看视频更加方便的。

将Json结构展平

前言 技术群里面一个哥们在群里提了一个问题,怎么把Json的树形结构展平成一层 在线Json格式化工具 将这个JSON 展平成这样 代码 使用方法 static void Main(string[] args) {//将测试对象转换成测试Jsonvar json JsonConvert.SerializeObject(new{Id 1,Name …

【数据分析 - 基础入门之NumPy⑤】NumPy基本操作 - 二

知识目录 前言一、聚合函数二、矩阵操作2.1 算术运算2.2 线性代数2.3 其他数学操作 三、广播机制3.1 广播的原则3.2 案例 四、排序五、文件操作结语相关导读 前言 大家好!本期给大家带来的是【数据分析 - 基础入门之NumPy⑤】NumPy基本操作 - 二,收录于…

t113i不查网线启动,内核[ cut here ]崩溃问题解决

前言 环境介绍: 1.编译环境 Ubuntu 18.04.5 LTS 2.SDK T113-i_v1.0 3.单板 迅龙TLT113-EVM-A1.1-000 自制底板 # 一、现象 插上网线启动,内核打印信息正常 不插网线启动,内核存在CPU崩溃打印[ cut here ] 二、问题根因 根据错误…

超详细JDK下载与安装步骤

目录 一、创建软件文件夹 二、安装软件 三、配置环境变量 四、 测试环境变量 一、创建软件文件夹 c盘目录创建devloop/Java/jdk1.8文件夹和devloop/Java/jre1.8文件夹 二、安装软件 打开jdk安装包 选择下一步 三、配置环境变量 右击此电脑,点击属性 点击高级系…

leetcode 513. 找树左下角的值

2023.7.7 题意要求是最底层的节点,则用层序遍历是最合适的,每一层遍历将元素放入一个数组中,等到最后一层遍历完之后,取这个数组的第一个元素即为所求节点值。 下面上代码: class Solution { public:int findBottomLe…

OpenCV在一张图片上以不同的透明度添加另一张图片

// 包含必要的OpenCV头文件 #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp> using namespace cv;// 定义全局变量 #define WINDOW_NAME "线

ACL 2023|如何智能生成吸引人又符合实际的标题?

夕小瑶科技说 原创 作者 | 小戏、Python 标题生成&#xff0c;乍一看似乎并不是一个复杂的任务&#xff0c;要数据简单的爬虫就可以获得许多标题-文本对&#xff0c;要评价通过用户点击与浏览的次数就多少可以区分“好标题”与“坏标题”&#xff0c;万事俱备使用一些经典的监…

Tomcat安装与配置(详细教程)

一、安装Tomcat服务器 1.下载地址&#xff08;Tomcat官网&#xff09;http://tomcat.apache.org/ 2.将下载的zip文件解压到指定的目录&#xff08;例如&#xff1a;D盘&#xff0c;目录不要有中文&#xff09; D:\apache-tomcat-9.0.43 二、配置Tomcat环境变量 &#xff08;…

Scrap爬虫框架集成Selenium来解析动态网页

1、爬虫项目单独使用scrpay框架的不足 当前网站普遍采用了javascript 动态页面&#xff0c;特别是vue与react的普及&#xff0c;使用scrapy框架定位动态网页元素十分困难&#xff0c;而selenium是最流行的浏览器自动化工具&#xff0c;可以模拟浏览器来操作网页&#xff0c;解…

金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)

项目设计集合&#xff08;人工智能方向&#xff09;&#xff1a;助力新人快速实战掌握技能、自主完成项目设计升级&#xff0c;提升自身的硬实力&#xff08;不仅限NLP、知识图谱、计算机视觉等领域&#xff09;&#xff1a;汇总有意义的项目设计集合&#xff0c;助力新人快速实…

Junit 快速入门

✏️作者&#xff1a;银河罐头 &#x1f4cb;系列专栏&#xff1a;JavaEE &#x1f332;“种一棵树最好的时间是十年前&#xff0c;其次是现在” 目录 为什么学 JunitJunit 相关技术注解TestDisabledBeforeAll, AfterAllBeforeEach, AfterEach 参数化单参数CSV 获取参数多参数方…

华为云书库《Spring Boot2系列实战教程》电子书

华为开发者大会PaaS生态电子书推荐&#xff0c;助你成为了不起的开发者&#xff01; 处理Spring Boot 常见企业级需求&#xff0c;《Spring Boot2系列实战教程》来了&#xff01; 点击下方进入华为云官网 https://auth.huaweicloud.com/authui/login.html?localezh-cn&…

MySQL基础知识(一)-超详细Windows系统安装MySQL详细教程

1.简介 原计划&#xff0c;今天这篇想要给小伙伴们讲解一下python操作mysql数据库&#xff0c;但是由于近期换了一台新的电脑&#xff0c;所以一看mysql数据库都没安装&#xff0c;所有才有了这篇文章。尽管网上不乏此类型的文章&#xff0c;但是刚好自己要安装&#xff0c;所以…

C语言 base32与base64加解密

概述 Base32、Base64编码就是分别用32个、64个可打印字符表示二进制数据。 一、Base32规则 32 2^5&#xff0c;所以需要5 Bit来表示一个base32字符。一个字节8 Bit&#xff0c;5和8的最小公倍数是40。编码的过程中&#xff0c;以5个字节为一组转为8个base32字符&#xff0c;不…

python OA流程图xml文件画图 graphviz的使用

下面的公文发文的流程图&#xff0c;虽然流程环节有坐标信息&#xff0c;但graphviz设置pos参数效果也不是太好 问题在于如何为流程环节设置绝对坐标 D:\Study\myproject\Python_auto_office\flow_report\utils\draw_image.py 通过xml流程文件绘制流程图 import graphviz …

[期末网页作业]-小米官网(html+css+js)

今天&#xff0c;我非常高兴地向大家展示我的最新成果——仿写小米官网的页面。经过一个漫长的期末考试季节&#xff0c;我终于完成了这个耗费了许多心血的项目。在这个过程中&#xff0c;我付出了大量的时间和努力来确保每一个细节都尽善尽美。 首先&#xff0c;我注重了页面的…

【BMS】电池能量管理:充电管理(含关键参数)

&#x1f50b; 电池包能量管理&#xff1a;充电管理&#xff08;含关键参数&#xff09; &#x1f50b; 零、友情提示&#xff1a;若时间有限或者有基础的同学可直接跳至第四章查看一、以通信为基础1.典型电路2.软件时序 二、充电过程&#xff08;常规&#xff09;️1.充电参数…

【剑指offer】6.二叉树的下一个结点(java)

文章目录 二叉树的下一个结点描述输入描述&#xff1a;返回值描述&#xff1a;示例1示例2示例3示例4思路完整代码 二叉树的下一个结点 描述 给定一个二叉树其中的一个结点&#xff0c;请找出中序遍历顺序的下一个结点并且返回。注意&#xff0c;树中的结点不仅包含左右子结点…