按照采集通道规划,需在hadoop102,hadoop103,hadoop104三台节点分别部署一个Flume。可参照以下步骤先在hadoop102安装,然后再进行分发。
1、Flume入门
1.1、 Flume安装部署
1.1.1、 安装地址
(1) Flume官网地址:Welcome to Apache Flume — Apache Flume
(2)文档查看地址:Flume 1.11.0 User Guide — Apache Flume
(3)下载地址:Index of /dist/flume
1.1.2、 安装部署
(1)将apache-flume-1.9.0-bin.tar.gz上传到linux的/opt/software目录下
(2)解压apache-flume-1.9.0-bin.tar.gz到/opt/module/目录下
[shuidi@hadoop102 software]$ tar -zxf /opt/software/apache-flume-1.9.0-bin.tar.gz -C /opt/module/
(3)修改apache-flume-1.9.0-bin的名称为flume
[shuidi@hadoop102 module]$ mv /opt/module/apache-flume-1.9.0-bin /opt/module/flume
(4)将lib文件夹下的guava-11.0.2.jar删除以兼容Hadoop 3.1.3
[shuidi@hadoop102 module]$ rm /opt/module/flume/lib/guava-11.0.2.jar
注意:删除guava-11.0.2.jar的服务器节点,一定要配置hadoop环境变量。否则会报如下异常。
Caused by: java.lang.ClassNotFoundException: com.google.common.collect.Lists
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
... 1 more
(5)修改conf目录下的log4j.properties配置文件,配置日志文件路径
[shuidi@hadoop102 conf]$ vim log4j.properties
flume.log.dir=/opt/module/flume/logs
1.2、分发Flume
[shuidi@hadoop102 ~]$ xsync /opt/module/flume/
1.3、项目经验
(1)堆内存调整
Flume堆内存通常设置为4G或更高,配置方式如下:
修改/opt/module/flume/conf/flume-env.sh文件,配置如下参数(虚拟机环境暂不配置)
export JAVA_OPTS="-Xms4096m -Xmx4096m -Dcom.sun.management.jmxremote"
注:
-Xms表示JVM Heap(堆内存)最小尺寸,初始分配;
-Xmx 表示JVM Heap(堆内存)最大允许的尺寸,按需分配。
2、日志采集Flume
2.1、日志采集Flume配置概述
按照规划,需要采集的用户行为日志文件分布在hadoop102,hadoop103两台日志服务器,故需要在hadoop102,hadoop103两台节点配置日志采集Flume。日志采集Flume需要采集日志文件内容,并对日志格式(JSON)进行校验,然后将校验通过的日志发送到Kafka。
此处可选择TaildirSource和KafkaChannel,并配置日志校验拦截器。
选择TailDirSource和KafkaChannel的原因如下:
1)TailDirSource
TailDirSource相比ExecSource、SpoolingDirectorySource的优势
TailDirSource:断点续传、多目录。Flume1.6以前需要自己自定义Source记录每次读取文件位置,实现断点续传。
ExecSource可以实时搜集数据,但是在Flume不运行或者Shell命令出错的情况下,数据将会丢失。
SpoolingDirectorySource监控目录,支持断点续传。
2)KafkaChannel
采用Kafka Channel,省去了Sink,提高了效率。
日志采集Flume关键配置如下:
3、 日志采集Flume配置实操
1)创建Flume配置文件
在hadoop102节点的Flume的job目录下创建file_to_kafka.conf
[shuidi@hadoop104 flume]$ mkdir job
[shuidi@hadoop104 flume]$ vim job/file_to_kafka.conf
2)配置文件内容如下
#定义组件
a1.sources = r1
a1.channels = c1
#配置source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/module/applog/log/app.*
a1.sources.r1.positionFile = /opt/module/flume/taildir_position.json
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.atguigu.gmall.flume.interceptor.ETLInterceptor$Builder
#配置channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092
a1.channels.c1.kafka.topic = topic_log
a1.channels.c1.parseAsFlumeEvent = false
#组装
a1.sources.r1.channels = c1
3)编写Flume拦截器
(1)创建Maven工程flume-interceptor
(2)创建包:com.atguigu.gmall.flume.interceptor
(3)在pom.xml文件中添加如下配置
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.62</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
(4)在com.atguigu.gmall.flume.utils包下创建JSONUtil类
package com.atguigu.gmall.flume.utils;
import com.alibaba.fastjson.JSONObject;
import com.alibaba.fastjson.JSONException;
public class JSONUtil {
/*
* 通过异常判断是否是json字符串
* 是:返回true 不是:返回false
* */
public static boolean isJSONValidate(String log){
try {
JSONObject.parseObject(log);
return true;
}catch (JSONException e){
return false;
}
}
}
(5)在com.atguigu.gmall.flume.interceptor包下创建ETLInterceptor类
package com.atguigu.gmall.flume.interceptor;
import com.atguigu.gmall.flume.utils.JSONUtil;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.StandardCharsets;
import java.util.Iterator;
import java.util.List;
public class ETLInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
//1、获取body当中的数据并转成字符串
byte[] body = event.getBody();
String log = new String(body, StandardCharsets.UTF_8);
//2、判断字符串是否是一个合法的json,是:返回当前event;不是:返回null
if (JSONUtil.isJSONValidate(log)) {
return event;
} else {
return null;
}
}
@Override
public List<Event> intercept(List<Event> list) {
Iterator<Event> iterator = list.iterator();
while (iterator.hasNext()){
Event next = iterator.next();
if(intercept(next)==null){
iterator.remove();
}
}
return list;
}
public static class Builder implements Interceptor.Builder{
@Override
public Interceptor build() {
return new ETLInterceptor();
}
@Override
public void configure(Context context) {
}
}
@Override
public void close() {
}
}
(6)打包
(7)需要先将打好的包放入到hadoop102的/opt/module/flume/lib文件夹下面。
4、 日志采集Flume测试
1)启动Zookeeper、Kafka集群
2)启动hadoop102的日志采集Flume
[shuidi@hadoop102 flume]$ bin/flume-ng agent -n a1 -c conf/ -f job/file_to_kafka.conf -Dflume.root.logger=info,console
3)启动一个Kafka的Console-Consumer
[shuidi@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic topic_log
4)生成模拟数据
[shuidi@hadoop102 ~]$ lg.sh
5)观察Kafka消费者是否能消费到数据
5、 日志采集Flume启停脚本
1)分发日志采集Flume配置文件和拦截器
若上述测试通过,需将hadoop102节点的Flume的配置文件和拦截器jar包,向另一台日志服务器发送一份。
[shuidi@hadoop102 flume]$ scp -r job hadoop103:/opt/module/flume/
[shuidi@hadoop102 flume]$ scp lib/flume-interceptor-1.0-SNAPSHOT-jar-with-dependencies.jar hadoop103:/opt/module/flume/lib/
2)方便起见,此处编写一个日志采集Flume进程的启停脚本
在hadoop102节点的/home/shuidi/bin目录下创建脚本f1.sh
[shuidi@hadoop102 bin]$ vim f1.sh
在脚本中填写如下内容
#!/bin/bash
case $1 in
"start"){
for i in hadoop102 hadoop103
do
echo " --------启动 $i 采集flume-------"
ssh $i "nohup /opt/module/flume/bin/flume-ng agent -n a1 -c /opt/module/flume/conf/ -f /opt/module/flume/job/file_to_kafka.conf >/dev/null 2>&1 &"
done
};;
"stop"){
for i in hadoop102 hadoop103
do
echo " --------停止 $i 采集flume-------"
ssh $i "ps -ef | grep file_to_kafka | grep -v grep |awk '{print \$2}' | xargs -n1 kill -9 "
done
};;
esac
3)增加脚本执行权限
[shuidi@hadoop102 bin]$ chmod 777 f1.sh
4)f1启动
[shuidi@hadoop102 module]$ f1.sh start
5)f1停止
[shuidi@hadoop102 module]$ f1.sh stop