深入理解链表:一种动态的线性数据结构

news2024/10/6 14:38:42

文章目录

  • 前言
    • 1. 概述
    • 2. 单向链表
    • 3. 单向链表(带哨兵)
    • 4. 双向链表(带哨兵)
    • 5. 环形链表(带哨兵)
    • 6. 结语

前言

链表是我们在日常编程中经常使用的一种数据结构,它相比于数组具有更好的动态性能。但是,对链表的深入理解需要我们掌握其内在的逻辑结构和操作原理。本文将带领读者一起深入理解链表的概念、种类、特性及其在Java中的具体实现方式。

我们将从最简单的单向链表开始,探讨如何通过Java代码实现它的主要操作,如添加、遍历、插入和删除节点等。然后,我们会讨论更复杂的链表类型,如带有哨兵节点的链表,双向链表和环形链表,分析它们的优缺点以及适用的场景。

1. 概述

链表是一种基本的数据结构,用于维护数据元素的线性集合。链表中的元素(通常称为节点)不一定在内存中是连续存储的。相反,每个元素都包含了指向其下一个元素的指针或引用。这种数据结构的特性,使得插入或删除元素的操作相对于数组等连续存储的数据结构来说,更加方便和高效。

链表的类型主要有以下几种:
在这里插入图片描述

  • 单向链表,每个元素只知道其下一个元素是谁

image-20221110083407176

  • 双向链表,每个元素知道其上一个元素和下一个元素

image-20221110083427372

  • 循环链表,通常的链表尾节点 tail 指向的都是 null,而循环链表的 tail 指向的是头节点 head

image-20221110083538273

链表内还有一种特殊的节点称为哨兵(Sentinel)节点,也叫做哑元( Dummy)节点,它不存储数据,通常用作头尾,用来简化边界判断,如下图所示

image-20221110084611550
随机访问性能

链表的随机访问性能并不强大。如果需要根据索引查找特定的元素,必须从头节点开始,逐一遍历节点直到找到目标节点。因此,此操作的时间复杂度为 O ( n ) O(n) O(n),其中 n n n 为链表的长度。

插入或删除性能

链表在插入或删除节点时的性能主要取决于操作的位置:

  • 在头节点进行插入或删除:由于头节点可以被立即访问,因此在链表的起始位置进行插入或删除操作的时间复杂度为 O ( 1 ) O(1) O(1)

  • 在尾节点进行插入或删除:如果已知尾节点(即尾节点的引用已经被保存),则在链表的结束位置进行插入或删除操作的时间复杂度为 O ( 1 ) O(1) O(1)。然而,如果尾节点未知,我们需要从头节点开始遍历链表以找到尾节点,这使得时间复杂度升至 O ( n ) O(n) O(n)

  • 在中间位置进行插入或删除:这涉及两个步骤,首先需要找到目标位置(这部分的时间复杂度为 O ( n ) O(n) O(n)),然后进行实际的插入或删除操作(这部分的时间复杂度为 O ( 1 ) O(1) O(1))。因此,总的时间复杂度为 O ( n ) + O ( 1 ) = O ( n ) O(n) + O(1) = O(n) O(n)+O(1)=O(n)

2. 单向链表

根据单向链表的定义,首先定义一个存储 value 和 next 指针的类 Node,和一个描述头部节点的引用

public class SinglyLinkedList {
    
    private Node head; // 头部节点
    
    private static class Node { // 节点类
        int value;
        Node next;

        public Node(int value, Node next) {
            this.value = value;
            this.next = next;
        }
    }
}
  • Node 定义为内部类,是为了对外隐藏实现细节,没必要让类的使用者关心 Node 结构
  • 定义为 static 内部类,是因为 Node 不需要与 SinglyLinkedList 实例相关,多个 SinglyLinkedList实例能共用 Node 类定义

头部添加

public class SinglyLinkedList {
    // ...
    public void addFirst(int value) {
		this.head = new Node(value, this.head);
    }
}
  • 如果 this.head == null,新增节点指向 null,并作为新的 this.head
  • 如果 this.head != null,新增节点指向原来的 this.head,并作为新的 this.head
    • 注意赋值操作执行顺序是从右到左

while 遍历

public class SinglyLinkedList {
    // ...
    public void loop() {
        Node curr = this.head;
        while (curr != null) {
            // 做一些事
            curr = curr.next;
        }
    }
}

for 遍历

public class SinglyLinkedList {
    // ...
    public void loop() {
        for (Node curr = this.head; curr != null; curr = curr.next) {
            // 做一些事
        }
    }
}
  • 以上两种遍历都可以把要做的事以 Consumer 函数的方式传递进来
    • Consumer 的规则是一个参数无返回值,因此像 System.out::println 方法等都是 Consumer
    • 调用 Consumer 时,将当前节点 curr.value 作为参数传递给它

迭代器遍历

public class SinglyLinkedList implements Iterable<Integer> {
    // ...
    private class NodeIterator implements Iterator<Integer> {
        Node curr = head;
        
        public boolean hasNext() {
            return curr != null;
        }

        public Integer next() {
            int value = curr.value;
            curr = curr.next;
            return value;
        }
    }
    
    public Iterator<Integer> iterator() {
        return new NodeIterator();
    }
}
  • hasNext 用来判断是否还有必要调用 next
  • next 做两件事
    • 返回当前节点的 value
    • 指向下一个节点
  • NodeIterator 要定义为非 static 内部类,是因为它与 SinglyLinkedList 实例相关,是对某个 SinglyLinkedList 实例的迭代

递归遍历

public class SinglyLinkedList implements Iterable<Integer> {
    // ...
    public void loop() {
        recursion(this.head);
    }

    private void recursion(Node curr) {
        if (curr == null) {
            return;
        }
        // 前面做些事
        recursion(curr.next);
        // 后面做些事
    }
}

尾部添加

public class SinglyLinkedList {
    // ...
    private Node findLast() {
        if (this.head == null) {
            return null;
        }
        Node curr;
        for (curr = this.head; curr.next != null; ) {
            curr = curr.next;
        }
        return curr;
    }
    
    public void addLast(int value) {
        Node last = findLast();
        if (last == null) {
            addFirst(value);
            return;
        }
        last.next = new Node(value, null);
    }
}
  • 注意,找最后一个节点,终止条件是 curr.next == null
  • 分成两个方法是为了代码清晰,而且 findLast() 之后还能复用

尾部添加多个

public class SinglyLinkedList {
    // ...
	public void addLast(int first, int... rest) {
        
        Node sublist = new Node(first, null);
        Node curr = sublist;
        for (int value : rest) {
            curr.next = new Node(value, null);
            curr = curr.next;
        }
        
        Node last = findLast();
        if (last == null) {
            this.head = sublist;
            return;
        }
        last.next = sublist;
    }
}
  • 先串成一串 sublist
  • 再作为一个整体添加

根据索引获取

public class SinglyLinkedList {
    // ...
	private Node findNode(int index) {
        int i = 0;
        for (Node curr = this.head; curr != null; curr = curr.next, i++) {
            if (index == i) {
                return curr;
            }
        }
        return null;
    }
    
    private IllegalArgumentException illegalIndex(int index) {
        return new IllegalArgumentException(String.format("index [%d] 不合法%n", index));
    }
    
    public int get(int index) {
        Node node = findNode(index);
        if (node != null) {
            return node.value;
        }
        throw illegalIndex(index);
    }
}
  • 同样,分方法可以实现复用

插入

public class SinglyLinkedList {
    // ...
	public void insert(int index, int value) {
        if (index == 0) {
            addFirst(value);
            return;
        }
        Node prev = findNode(index - 1); // 找到上一个节点
        if (prev == null) { // 找不到
            throw illegalIndex(index);
        }
        prev.next = new Node(value, prev.next);
    }
}
  • 插入包括下面的删除,都必须找到上一个节点

删除

public class SinglyLinkedList {
    // ...
	public void remove(int index) {
        if (index == 0) {
            if (this.head != null) {
                this.head = this.head.next;
                return;
            } else {
                throw illegalIndex(index);
            }
        }
        Node prev = findNode(index - 1);
        Node curr;
        if (prev != null && (curr = prev.next) != null) {
            prev.next = curr.next;
        } else {
            throw illegalIndex(index);
        }
    }
}
  • 第一个 if 块对应着 removeFirst 情况
  • 最后一个 if 块对应着至少得两个节点的情况
    • 不仅仅判断上一个节点非空,还要保证当前节点非空

3. 单向链表(带哨兵)

观察之前单向链表的实现,发现每个方法内几乎都有判断是不是 head 这样的代码,能不能简化呢?

用一个不参与数据存储的特殊 Node 作为哨兵,它一般被称为哨兵或哑元,拥有哨兵节点的链表称为带头链表

public class SinglyLinkedListSentinel {
    // ...
    private Node head = new Node(Integer.MIN_VALUE, null);
}
  • 具体存什么值无所谓,因为不会用到它的值

加入哨兵节点后,代码会变得比较简单,先看几个工具方法

public class SinglyLinkedListSentinel {
    // ...
    
    // 根据索引获取节点
    private Node findNode(int index) {
        int i = -1;
        for (Node curr = this.head; curr != null; curr = curr.next, i++) {
            if (i == index) {
                return curr;
            }
        }
        return null;
    }
    
    // 获取最后一个节点
    private Node findLast() {
        Node curr;
        for (curr = this.head; curr.next != null; ) {
            curr = curr.next;
        }
        return curr;
    }
}
  • findNode 与之前类似,只是 i 初始值设置为 -1 对应哨兵,实际传入的 index 也是 [ − 1 , ∞ ) [-1, \infty) [1,)
  • findLast 绝不会返回 null 了,就算没有其它节点,也会返回哨兵作为最后一个节点

这样,代码简化为

public class SinglyLinkedListSentinel {
    // ...
    
    public void addLast(int value) {
        Node last = findLast();
        /*
        改动前
        if (last == null) {
            this.head = new Node(value, null);
            return;
        }
        */
        last.next = new Node(value, null);
    }
    
    public void insert(int index, int value) {
        /*
        改动前
        if (index == 0) {
            this.head = new Node(value, this.head);
            return;
        }
        */
        // index 传入 0 时,返回的是哨兵
        Node prev = findNode(index - 1);
        if (prev != null) {
            prev.next = new Node(value, prev.next);
        } else {
            throw illegalIndex(index);
        }
    }
    
    public void remove(int index) {
        /*
        改动前
        if (index == 0) {
            if (this.head != null) {
                this.head = this.head.next;
                return;
            } else {
                throw illegalIndex(index);
            }
        }
        */
        // index 传入 0 时,返回的是哨兵
        Node prev = findNode(index - 1);
        Node curr;
        if (prev != null && (curr = prev.next) != null) {
            prev.next = curr.next;
        } else {
            throw illegalIndex(index);
        }
    }
    
    public void addFirst(int value) {
        /*
        改动前
        this.head = new Node(value, this.head);
        */
		this.head.next = new Node(value, this.head.next);
        // 也可以视为 insert 的特例, 即 insert(0, value);
    }
}
  • 对于删除,前面说了【最后一个 if 块对应着至少得两个节点的情况】,现在有了哨兵,就凑足了两个节点

4. 双向链表(带哨兵)

public class DoublyLinkedListSentinel implements Iterable<Integer> {

    private final Node head;
    private final Node tail;

    public DoublyLinkedListSentinel() {
        head = new Node(null, 666, null);
        tail = new Node(null, 888, null);
        head.next = tail;
        tail.prev = head;
    }

    private Node findNode(int index) {
        int i = -1;
        for (Node p = head; p != tail; p = p.next, i++) {
            if (i == index) {
                return p;
            }
        }
        return null;
    }

    public void addFirst(int value) {
        insert(0, value);
    }

    public void removeFirst() {
        remove(0);
    }

    public void addLast(int value) {
        Node prev = tail.prev;
        Node added = new Node(prev, value, tail);
        prev.next = added;
        tail.prev = added;
    }

    public void removeLast() {
        Node removed = tail.prev;
        if (removed == head) {
            throw illegalIndex(0);
        }
        Node prev = removed.prev;
        prev.next = tail;
        tail.prev = prev;
    }

    public void insert(int index, int value) {
        Node prev = findNode(index - 1);
        if (prev == null) {
            throw illegalIndex(index);
        }
        Node next = prev.next;
        Node inserted = new Node(prev, value, next);
        prev.next = inserted;
        next.prev = inserted;
    }

    public void remove(int index) {
        Node prev = findNode(index - 1);
        if (prev == null) {
            throw illegalIndex(index);
        }
        Node removed = prev.next;
        if (removed == tail) {
            throw illegalIndex(index);
        }
        Node next = removed.next;
        prev.next = next;
        next.prev = prev;
    }

    private IllegalArgumentException illegalIndex(int index) {
        return new IllegalArgumentException(
                String.format("index [%d] 不合法%n", index));
    }

    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<Integer>() {
            Node p = head.next;

            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public Integer next() {
                int value = p.value;
                p = p.next;
                return value;
            }
        };
    }

    static class Node {
        Node prev;
        int value;
        Node next;

        public Node(Node prev, int value, Node next) {
            this.prev = prev;
            this.value = value;
            this.next = next;
        }
    }
}

5. 环形链表(带哨兵)

双向环形链表带哨兵,这时哨兵既作为头,也作为尾

image-20221229144232651

image-20221229143756065

image-20221229153338425

在这里插入图片描述

参考实现

public class DoublyLinkedListSentinel implements Iterable<Integer> {

    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<>() {
            Node p = sentinel.next;

            @Override
            public boolean hasNext() {
                return p != sentinel;
            }

            @Override
            public Integer next() {
                int value = p.value;
                p = p.next;
                return value;
            }
        };
    }

    static class Node {
        Node prev;
        int value;
        Node next;

        public Node(Node prev, int value, Node next) {
            this.prev = prev;
            this.value = value;
            this.next = next;
        }
    }

    private final Node sentinel = new Node(null, -1, null); // 哨兵

    public DoublyLinkedListSentinel() {
        sentinel.next = sentinel;
        sentinel.prev = sentinel;
    }

    /**
     * 添加到第一个
     * @param value 待添加值
     */
    public void addFirst(int value) {
        Node next = sentinel.next;
        Node prev = sentinel;
        Node added = new Node(prev, value, next);
        prev.next = added;
        next.prev = added;
    }

    /**
     * 添加到最后一个
     * @param value 待添加值
     */
    public void addLast(int value) {
        Node prev = sentinel.prev;
        Node next = sentinel;
        Node added = new Node(prev, value, next);
        prev.next = added;
        next.prev = added;
    }
    
    /**
     * 删除第一个
     */
    public void removeFirst() {
        Node removed = sentinel.next;
        if (removed == sentinel) {
            throw new IllegalArgumentException("非法");
        }
        Node a = sentinel;
        Node b = removed.next;
        a.next = b;
        b.prev = a;
    }

    /**
     * 删除最后一个
     */
    public void removeLast() {
        Node removed = sentinel.prev;
        if (removed == sentinel) {
            throw new IllegalArgumentException("非法");
        }
        Node a = removed.prev;
        Node b = sentinel;
        a.next = b;
        b.prev = a;
    }

    /**
     * 根据值删除节点
     * <p>假定 value 在链表中作为 key, 有唯一性</p>
     * @param value 待删除值
     */
    public void removeByValue(int value) {
        Node removed = findNodeByValue(value);
        if (removed != null) {
            Node prev = removed.prev;
            Node next = removed.next;
            prev.next = next;
            next.prev = prev;
        }
    }

    private Node findNodeByValue(int value) {
        Node p = sentinel.next;
        while (p != sentinel) {
            if (p.value == value) {
                return p;
            }
            p = p.next;
        }
        return null;
    }

}

6. 结语

通过对链表的深入学习和理解,我们可以看到,链表并不只是一个简单的数据结构,它在解决许多编程问题上具有独特的优势。学会有效地使用和优化链表,可以帮助我们写出更高效、更易维护的代码。

希望本文能够帮助读者更好地理解链表这一数据结构,并能在实际编程中灵活运用。链表只是数据结构中的一小部分,接下来我们将继续深入探讨其他更复杂的数据结构,如树、图等。让我们共同期待!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/727639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spark(17):RDD、DataFrame、DataSet三者的关系

目录 0. 相关文章链接 1. 三者的产生 2. 三者的共性 3. 三者的区别 3.1. RDD 3.2. DataFrame 3.3. DataSet 4. 三者的互相转换 4.1. 互相转换图 4.2. DataFrame 和 DataSet 转换 0. 相关文章链接 Spark文章汇总 1. 三者的产生 在 SparkSQL 中 Spark 为我们提供了两…

Flutter TextField 输入框 简单使用

创建方式一&#xff1a; ///用于文本输入框 TextEditingController controller new TextEditingController();/// 设置TextField中显示的内容void setEditeInputTextFunction(String flagText) {controller .text flagText;}/// 清除TextField中显示的内容void clearEditeIn…

Web服务器群集:podman与docker技术集群

目录 一、理论 1.虚拟化 2.容器 3.podman 4.docker 5.podman与docker区别 二、实验 1.部署podman 2.部署docker 三、总结 一、理论 1.虚拟化 &#xff08;1&#xff09;概念 虚拟化&#xff1a;将应用程序和系统内核资源进行解耦&#xff0c;以操作系统级别进行隔离…

利用langchain-ChatGLM、langchain-TigerBot实现基于本地知识库的问答应用

目录 1 原理 2 langchain-ChatGLM的开发部署 2.1 安装环境 2.2 加载本地模型 3 langchain-TigerBot的开发部署 刷B站的时候&#xff0c;无意中看到吴恩达的一个langchain的教程&#xff0c;然后去github上搜了下&#xff0c;发现别人利用langchain和chatGLM做的基于本地知…

【C++11】lambda表达式 包装器

文章目录 1 lambda表达式1.1 引例1.2 lambda表达式的基本语法1.3 lambda表达式的底层原理 2 包装器3 bind 1 lambda表达式 1.1 引例 在C98中&#xff0c;如果想要对一个数据集合中的元素进行排序&#xff0c;可以使用std::sort方法&#xff1a; #include <algorithm> …

docker运行 mycli

1. 制作镜像 1.1 Dockerfile: FROM python:3.8 ENV MYSQL_HOST192.168.1.108 ENV MYSQL_PWDroot RUN apt-get update && apt-get install -y less RUN pip3 install mycli ENTRYPOINT ["mycli"] 注意 python:3.8 pip3 mycli 具有版本限制的,如果改了版…

【计算机网络】1.5——计算机网络的体系结构(网络分层模型)

计算机网络的体系结构 概述 计算机网络的体系结构是计算机网络及其构建所应完成功能的精确定义 考题 不属于网络体系结构所描述的内容的是 A、网络的层次 B、每层使用的协议 C、协议的内部实现细节 D、每层必须完成的功能 这些功能的「实现细节」&#xff0c;是遵守这种体系…

Web 前端 Day 1

课程大纲&#xff1a; html 结构 css 表现 Js 行为 jquery库 &#xff08;地位下降趋势 仍旧在用&#xff09; bootstrap 前端高端只是&#xff1a;angular angularjs html 超文本标记语言 相关解释 描述网页的语言 不仅有文字&#xff0c;还有图片、音频、视频等等 超…

某网站JS加密、OB混淆与CSS反爬实战分析

1. 写在前面 最近一段时间接触了一些小说网站的业务。发现很多的小说网站&#xff0c;甚至一些小站它们的安全防护措施做的都很到位&#xff01;例如上次说到的的五秒盾也是存在于一个小说小站。今天要讲的这个网站它集JS加密、ob混淆、CSS反爬于一体 目标站点&#xff1a; aH…

用真人模型制作3D虚拟人物,岂不是更真实?

3D虚拟人物是指利用计算机技术和图形学技术创建的一种能够模拟真实人体形态、行为和语言的虚拟实体。与传统的平面图像或视频不同&#xff0c;3D虚拟人物具有立体感和真实感&#xff0c;能够在虚拟环境中实现人机交互和情感交流&#xff0c;给用户带来全新的沉浸式体验。 随着…

文件批量改名新技巧:轻松将日期插入到文件名中,整理更有序!

在数字化时代&#xff0c;我们每天都面临着大量的文件&#xff0c;而合理整理和命名这些文件对于我们的工作和生活至关重要。特别是在需要存档或分享文件时&#xff0c;具有清晰的命名规则可以极大地提升工作效率和组织性。 首先&#xff0c;进入文件批量改名高手的文件批量重…

表征材料表面性质​的第一性原理计算方法:功函数

功函数计算是指通过计算材料表面或界面上的电子结构能量差来确定材料的界面特性的方法。在材料科学和表面科学领域&#xff0c;界面的性质对于材料的功能和性能具有重要影响。通过理解和控制界面&#xff0c;可以优化材料的电子传输、光学性能、催化活性等关键特性。 功函数表示…

网络协议【图解TCP/IP(笔记二)】

文章目录 网络协议随处可见的协议协议的必要性生活中的协议计算机中的协议分组交换协议协议的标准化 网络协议 随处可见的协议 在计算机网络与信息通信领域里&#xff0c;人们经常提及“协议”一词。互联网中常用的具有代表性的协议有IP、TCP、HTTP等。而LAN&#xff08;局域…

企业元宇宙虚拟场景开发公司广州华锐互动

元宇宙是一个虚拟的世界&#xff0c;可以模拟现实世界中的场景和交互方式。利用元宇宙搭建线上元宇宙互动展厅可以让企业在虚拟环境中展示产品、服务和品牌形象&#xff0c;与客户进行互动交流&#xff0c;提高企业的知名度和影响力。 通过搭建线上元宇宙互动展厅&#xff0c;利…

【python学习】matplotlib绘制仅有y轴的数值条码图/台阶图(隐藏特定坐标轴)

matplotlib绘制仅有y轴的数值条码图/台阶图 图形来源图形绘制思路绘图代码 图形来源 今天看文章&#xff0c;文章中有一幅图&#xff0c;图的表达形式很适合我目前的数据展示&#xff0c;于是想要用python画出来。 文章来源&#xff1a;Yun-Hua Cheng_2017_Scientific Report…

web学习笔记1

计算机&#xff1a; 课程大纲&#xff1a;html&#xff08;五条猫结构&#xff09; 结构 css 表现 JavaScript 行为 html&#xff1a;超文本标记语言 超&#xff1a;超链接&#xff0c;能从一个网页跳转到另一个网页 标记&#xff1a;文本要变成超文本&#xff0c;就需要各…

pwn05(应对简单栈溢出的常规套路)

目录 一、常规检查&#xff08;nc、file、checksec&#xff09; 二、IDA反编译&#xff0c;只找两个东西即可 1、寻找造成栈溢出的函数的地址到ebp的距离 2、 寻找我们所要利用的函数的地址&#xff08;即我们希望程序最后返回到哪里&#xff09; 三、编写并运行exp脚本 一…

eNSP-NAT网络地址转换服务

NAT网络地址转换服务 文章目录 NAT网络地址转换服务一、题目要求二、题目分析三、拓扑结构四、基础配置五、测试验证 一、题目要求 1.私网地址使用192.168.1.0/24进行子网划分 2.Telnet Server设备启动Telnet服务 3.isp设备仅配置IP地址 4.PC6,PC7,PC8均可以访问PC9 5.内网…

python 第十章 函数

系列文章目录 第一章 初识python 第二章 变量 第三章 基础语句 第四章 字符串str 第五章 列表list [] 第六章 元组tuple ( ) 第七章 字典dict {} 第八章 集合set {} 第九章 常用操作 文章目录 系列文章目录10.1函数的作用10.2函数的使用步骤定义函数调用函数函数的注意事项 10…

Linux 内存泄漏检测的实现原理与实现

在使用没有垃圾回收的语言时&#xff08;如 C/C&#xff09;&#xff0c;可能由于忘记释放内存而导致内存被耗尽&#xff0c;这叫 内存泄漏。由于内核也需要自己管理内存&#xff0c;所以也可能出现内存泄漏的情况。为了能够找出导致内存泄漏的地方&#xff0c;Linux 内核开发者…