造个CPU玩玩——从硬件到软件的设计

news2024/11/18 9:31:14

本文使用模拟电路制造CPU——纸上谈兵。

计算机中蕴藏的哲理

最基本的思想是:通过基本电路的接线,确立输入-输出规则,类似函数的入参和返回值,便构成一个功能电路单元。单元套单元组成新单元,如此往复。“一生二,二生三,三生万物”。这是硬件层面的。

软件层面的也是类似的道理。

向下不断的穷尽,我们会来到物理世界,最基本的电荷和磁场规则。再往里就是物理学还在探索的空间,未知。

向上不断的探索,我们会来到应用世界,充满了人类的欲望和需求。

一个领域依托于它的下一层,自己组织自己这一层级的基本单元之间的关系——本质就是排列组合的规则。

如果最基本的粒子是一,那么“一生二,二生三,三生万物”,物物相生相联,夫如是已。

本文的行文逻辑也是,从简入繁,由低向上,构建出一个“复杂”的CPU系统。虽是模拟,然代表了大致的脉络。

本文原始链接地址:https://blog.csdn.net/windanchaos/article/details/131524301

基本电路单元

参考:https://blog.csdn.net/windanchaos/article/details/81143641

主要是基本的电路单元
电路

八位加法器

使用工具:https://www.logiccircuit.org/
工具中有基本的逻辑电路单元、输入输出、分线器、晶振模拟器、显示装置模拟单元等。

如下:半加器是异或、与门电路接线构成。2个输入2个输出。

  • 半加器 HA(HalfAdder)

  • 半加器组成个全加器 FA(FullAdder)

  • 8位的求反RE
  • 半加器组合成8位的计算器

寄存器

仍然是基本电路往更复杂电路组合的逻辑。

只不过,这部分电路有个特征,术语叫时序电路,其最基本的特征是相对组合电路来讲的,组合电路特定输入就得到特定输出,时序电路则不然,它的输出和输入的对应关系是不确定的,其电路的输出会接到输入上,最终输出是由输入、输出和电路当前状态决定。话不多说直接上截图。

  • R-S触发器,输出Q确定后,Set、Clear、Prs不改变,那么电路是Q值是稳定的,可存储一位二进制。

e99dbf70-4edb-4466-8c02-25d9d34b9ea5.png

  • D触发器(R-S)组合起来,加了2个与门电路,具备控制是否可读可写的能力
    b3ae68dd-015a-43ee-9140-4fb3399bf81c.png

  • D边沿触发器,增加了时钟上升沿才可以操作的电路
    11403bbe-0a13-47d3-9246-5930ecb8fc73.png

  • T触发器,D基础上接线,具备输出按时钟周期变化的能力,是计数器的基本单元
    b5fd8971-196f-4037-8b1a-18668e735c09.png

  • D边沿触发器组成一个能存储1byte(8个位)的单元
    1cbd3f61-81fc-4a3a-bf3c-223fc0b41ef9.png

  • Byte单元增加各种控制输入,就组成1个8位寄存器
    bac99be7-d4dc-488e-80a0-d5071e052ed1.png

  • 3-8译码器,3个位(000),0和1变化有8种组合情况,特定组合选中特定的Byte单元,具有了寻址概念
    77626fcc-faf5-4ea0-b92a-6f5eef8949f0.png

  • 8x1电路,Ad是输入的3位地址
    576edeff-5512-4af5-a492-0264e6a651b7.png

最后演示一下001号寄存器被选中后的,执行写入和读取的操作。开始是重置255和清零,之后演示从0到8修改寄存器中值。

0f5c7c3d-6436-40ec-b2a7-96cdef9c757e.gif

加减法电路

利用已有的电路部件,搭建一个可以计算加法和减法的电路。此CPU计算单元雏形。

6b0628c7-0333-4ccc-8e24-85c3a927117c.png

上面的MC、RAM、PC、Reg、ALU都有控制选中(CS片选)、可写(不可写则可读)的输入,选中时对应灯泡点亮示意。
使用16位中的13位二进制的01来对应。
通过不同的排列组合即可定义每个时钟周期电路的状态(哪些单元可以被操控读写)。

下面是对应电路的控制单元的标识,或运算一组和,就是控制电路了。

import os
# 指令相关
# ABC寄存器
A_WE = 1
A_CS = 1 << 1

B_WE = 1 << 2
B_CS = 1 << 3

C_WE = 1 << 4
C_CS = 1 << 5

# 0为加,1为减
ALU_SUB = 1 << 6
ALU_EN = 1 << 7

MC_CS = 1 << 8
MC_WE = 1 << 9

PC_CS = 1 << 10
PC_WE = 1 << 11
PC_EN = 1 << 12
#空操作,未接线
NOTHING =  1 << 14
#停止(不再产生时钟信号)
HLT = 1 << 15

dirname = os.path.dirname(__file__)
fileName = os.path.join(dirname,'ins.bin')

micro = [
#启动电源PC=0    
#空操作,用于清0,清0后PC=1
NOTHING,
# PC加1,从RAM中读取1下标的数到A寄存器,PC=2
MC_CS|A_CS|A_WE|PC_WE|PC_EN|PC_CS,
# PC加1,从RAM中读取2下标的数到B寄存器,PC=3
MC_CS|B_CS|B_WE|PC_WE|PC_EN|PC_CS,
# 读取A、B寄存器数到ALU单元并计算
ALU_EN|A_CS|B_CS,
#ALU计算结果输出到C寄存器
ALU_EN|C_CS|C_WE,
# PC=3,控制MC操控ROM可写,写入C寄存器读取的值
MC_CS|MC_WE|C_CS,
HLT
]
# 二进制指令输出到ins.bin文本,通过ciruit加载到ROM中。
with open(fileName,'wb') as file:
    for value in micro:
        file.write(value.to_bytes(2,byteorder='little'))

print("finished compile")

以下是加法的gif演示(减法免了),演示从RAM中读取5和3到寄存器,使用ALU单元求和,输出到C寄存器,再写回到RAM。

7f0c6d7a-281d-4230-b87a-8ab3edca4e46.gif

组合CPU

给每个逻辑元件添加控制单元以达到,不同输入组合对应不同的输出。由于我们已实现了寄存器(一种能够记住1byte的单元),那么遍可以控制其允许输入/输出。

不同的原件,同一时刻的允许输入输出状态就定义了当时单元和单元之间的关系,如A寄存器输出,B是输入,其他不设置,那么此刻完成了A寄存器向B寄存器传输数据的目的。如此类推。

控制单元 Control Unit

控制单元是CPU的核心部件,由寄存器控制器、读写控制器及其他输入输入构成。如下:

控制单元接线——总览

将寄存器控制器和读写控制器接线,输入32位,对应位实现不同目的:

  • 低10位分2组,5+5分别标识写和读,接线到RWC上输入哪个单元读、哪个单元写。
  • 第11-15位分别标识源读、源写,目的读、目的写
  • 第16-19位位PC计数
  • 第20-23位为四则运算组合,一种8种
  • 第24-28 为控制ALU单元组合
    46bf1f0b-4a56-4117-a8d3-c0dc718b5193.png

PC 计数器

时钟下降沿(1->0)时完成指令计数,重新计数。是控制指令周期用的。

寄存器控制 RC

说明,W\R是5位输入,通过一个5-32译码器转换成0-32,可识别32个寄存器。
1317f0bf-2c5e-40d3-bc27-41569615919f.png

读写控制器RWC

读写控制器也是5位输入,接寄存器控制器
9dd4e5b2-30d7-44b0-830a-3445f09a9649.png

ALU

A、B是8位输入,OP是3位,3-8译码器,转为1-8,可支持8种运算。
1=加法 2=减法 3=加1 4=减1 5=And 6=OR 7=XOR 8=取反
a1fbf119-52c4-42dd-a8ec-b1a224c2d35c.png

内存控制器MC

RAM代表内存,MC为其控制单元
ed3d26de-70ea-4d41-b941-0bcecb4ce211.png

CPU接线

a271acf2-c048-4198-b22e-934f82953808.png

指令系统

执行的模式

通电之后,时钟定时脉动,提供给整个电路电压变化。通过control Uinit旁边的ROM中写入指令(32位的01组合数),CU(control Unit) 的PC每加1,则指令ROM读取的index +1,输入后从CU的d进入,完成对整个单元的控制。
ccc237ff-1176-40c3-a961-44ad763572e2.png

  • 取指令:先从RAM中把指令取到IR寄存器,目的操作数取到DST中,原操作数取到SRC中。
  • 译指令,IR指令进入CU中,从L1输入,DST从L2输入,SRC从L3输入——拼出 控制信息 + 操作单元 的组合

最后对这些电路按设计转成代码,代码备注也由说明

管脚代码

# 寄存器,RAM=MC
MSR = 1
MAR = 2
MDR = 3
# RAM就是MC控制器
RAM = 4
IR = 5
DST = 6
SRC = 7
A = 8
B = 9
C = 10
D = 11
DI = 12
SI = 13
SP = 14
BP = 15
CS = 16
DS = 17
SS = 18
ES = 19
VEC = 20
T1 = 21
T2 = 22

# 寄存器输出到总线上
MSR_OUT = MSR
MAR_OUT = MAR
MDR_OUT = MDR
RAM_OUT = RAM
IR_OUT = IR
DST_OUT = DST
SRC_OUT = SRC
A_OUT = A
B_OUT = B
C_OUT = C
D_OUT = D
DI_OUT = DI
SI_OUT = SI
SP_OUT = SP
BP_OUT = BP
CS_OUT = CS
DS_OUT = DS
SS_OUT = SS
ES_OUT = ES
VEC_OUT = VEC
T1_OUT = T1
T2_OUT = T2

# 写入寄存器,暂时没搞懂为什么左移5位
_DST_SHIFT = 5
MSR_IN = MSR << _DST_SHIFT
MAR_IN = MAR << _DST_SHIFT
MDR_IN = MDR << _DST_SHIFT
RAM_IN = RAM << _DST_SHIFT
IR_IN = IR << _DST_SHIFT
DST_IN = DST << _DST_SHIFT
SRC_IN = SRC << _DST_SHIFT
A_IN = A << _DST_SHIFT
B_IN = B << _DST_SHIFT
C_IN = C << _DST_SHIFT
D_IN = D << _DST_SHIFT
DI_IN = DI << _DST_SHIFT
SI_IN = SI << _DST_SHIFT
SP_IN = SP << _DST_SHIFT
BP_IN = BP << _DST_SHIFT
CS_IN = CS << _DST_SHIFT
DS_IN = DS << _DST_SHIFT
SS_IN = SS << _DST_SHIFT
ES_IN = ES << _DST_SHIFT
VEC_IN = VEC << _DST_SHIFT
T1_IN = T1 << _DST_SHIFT
T2_IN = T2 << _DST_SHIFT

# 电路中11-14位作为RWC单元的输入,控制S和D的读写,软件层面确认不同时读写同一个单元
# src中的值对应的寄存器,读取其值
SRC_R = 1 << 10
SRC_W = 1 << 11
DST_R = 1 << 12
DST_W = 1 << 13

PC_CS = 1 << 14
PC_WE = 1 << 15
PC_EN = 1 << 16
PC_OUT = PC_CS
PC_IN = PC_CS | PC_WE | PC_EN
PC_INC = PC_CS | PC_WE

# ALU
_OP_SHIFT = 17
OP_ADD = 0
OP_SUB = 1 << _OP_SHIFT
# 加减1
OP_INC = 2 << _OP_SHIFT
OP_DEC = 3 << _OP_SHIFT
OP_AND = 4 << _OP_SHIFT
OP_OR = 5 << _OP_SHIFT
OP_XOR = 6 << _OP_SHIFT
OP_NOT = 7 << _OP_SHIFT
ALU_OUT = 1 << 20
ALU_PSW = 1 << 21
ALU_INT_W = 1 << 22
ALU_INT = 1 << 23

ALU_STI = ALU_INT_W
ALU_CLI = ALU_INT_W | ALU_INT

# cyc标识当前指令执行完了,需要重置微程序的pc数
CYC = 1 << 30
HLT = 1 << 31

# 二地址指令和一地址 指令
ADDR2 = 1 << 7
ADDR1 = 1 << 6
ADDR2_SHIFT = 4
ADDR1_SHIFT = 2

# 四种寻址方式
AM_INS = 0  # 立即数
AM_REG = 1  # 寄存器
AM_DIR = 2  # 内存直接寻址
AM_RAM = 3  # 寄存器间接寻址


控制器代码controller.py

# 控制器

import os
import assembly as ASM
import pin

dirname = os.path.dirname(__file__)
filename = os.path.join(dirname, 'micro.bin')
micro = [pin.HLT for _ in range(0x10000)]
# 跳转转移指令
CJMPS = {ASM.JO, ASM.JNO, ASM.JZ, ASM.JNZ, ASM.JP, ASM.JNP}


def compile_addr2(addr, ir, psw, index):
    global micro
    # 操作
    op = ir & 0xf0
    amd = (ir >> 2) & 3  # 3 = 011
    ams = ir & 3
    INST = ASM.INSTRUCTIONS[2]
    if op not in INST:
        micro[addr] = pin.CYC
        return
    am = (amd, ams)
    if am not in INST[op]:
        micro[addr] = pin.CYC
        return
    EXEC = INST[op][am]
    if index < len(EXEC):
        micro[addr] = EXEC[index]
    else:
        micro[addr] = pin.CYC


def get_condition_jump(exec, op, psw):
    overflow = psw & 1
    zero = psw & 2
    parity = psw & 4
    if op == ASM.JO and overflow:
        return exec
    if op == ASM.JNO and not overflow:
        return exec
    if op == ASM.JZ and zero:
        return exec
    if op == ASM.JNZ and not zero:
        return exec
    if op == ASM.JP and parity:
        return exec
    if op == ASM.JNP and not parity:
        return exec
    return [pin.CYC]


def get_interrupt(exec, op, psw):
    interrupt = psw & 8
    if interrupt:
        return exec
    return [pin.CYC]


def compile_addr1(addr, ir, psw, index):
    global micro
    global CJMPS
    op = ir & 0xfc
    amd = ir & 3
    INST = ASM.INSTRUCTIONS[1]
    if op not in INST:
        micro[addr] = pin.CYC
        return
    if amd not in INST[op]:
        micro[addr] = pin.CYC
        return
    EXEC = INST[op][amd]
    if op in CJMPS:
        EXEC = get_condition_jump(EXEC, op, psw)
    if op == ASM.INT:
        EXEC = get_interrupt(EXEC, op, psw)
    if index < len(EXEC):
        micro[addr] = EXEC[index]
    else:
        micro[addr] = pin.CYC


def compile_addr0(addr, ir, psw, index):
    global micro
    # 操作
    op = ir
    INST = ASM.INSTRUCTIONS[0]
    if op not in INST:
        micro[addr] = pin.CYC
        return
    EXEC = INST[op]
    if index < len(EXEC):
        micro[addr] = EXEC[index]
    else:
        micro[addr] = pin.CYC


# 2^16次方是16进制的10000
# for循环对下标就行遍历赋值,ROM列有16个,一行一条指令。
# 16位组成:ir[8]+psw[4]+cyc[4],与运算高位和低位双截断
for addr in range(0x10000):
    ir = addr >> 8
    psw = (addr >> 4) & 0xf
    cyc = addr & 0xf
    # 小于取址长度,则写入取指令,6个时钟沿
    if cyc < len(ASM.FETCH):
        micro[addr] = ASM.FETCH[cyc]
        continue
    addr2 = ir & (1 << 7)
    addr1 = ir & (1 << 6)
    # 取指令之后的index
    index = cyc - len(ASM.FETCH)
    if addr2:
        compile_addr2(addr, ir, psw, index)
    elif addr1:
        compile_addr1(addr, ir, psw, index)
    else:
        compile_addr0(addr, ir, psw, index)
with open(filename, 'wb') as file:
    for var in micro:
        value = var.to_bytes(4, byteorder='little')
        file.write(value)
print('micro instruction compile finished! ')

程序代码 compiler.py

主要完成汇编转机器码的工作

import os
import pin
import assembly as ASM
import re

dirname = os.path.dirname(__file__)
inputFileName = os.path.join(dirname, 'program.asm')
outputFileName = os.path.join(dirname, 'program.bin')

# 代码的正则,分号是注释
annotation = re.compile(r"(.*?);.*")
# 代码
codes = []
# 标记,对应的代码
marks = {}
OP2 = {
    'MOV': ASM.MOV,
    'ADD': ASM.ADD,
    'CMP': ASM.CMP,
    'SUB': ASM.SUB,
    'AND': ASM.AND,
    'OR': ASM.OR,
    'XOR': ASM.XOR,
}
OP1 = {
    'INC': ASM.INC,
    'DEC': ASM.DEC,
    'NOT': ASM.NOT,
    'JMP': ASM.JMP,
    'JO': ASM.JO,
    'JNO': ASM.JNO,
    'JZ': ASM.JZ,
    'JNZ': ASM.JNZ,
    'JP': ASM.JP,
    'JNP': ASM.JNP,
    'PUSH': ASM.PUSH,
    'POP': ASM.POP,
    'CALL': ASM.CALL,
    'INT': ASM.INT,
}
OP0 = {
    'NOP': ASM.NOP,
    'HLT': ASM.HLT,
    'RET': ASM.RET,
    'STI': ASM.STI,
    'CLI': ASM.CLI,
    'IRET': ASM.IRET,
}

OP2SET = set(OP2.values())
OP1SET = set(OP1.values())
OP0SET = set(OP0.values())

# 可操作的寄存器
REGISTERS = {
    'A': pin.A,
    'B': pin.B,
    'C': pin.C,
    'D': pin.D,
    'SS': pin.SS,
    'CS': pin.CS,
    'SP': pin.SP,
}


class Code(object):
    # 代码
    CODE = 1
    # 标记
    LABEL = 2

    def __init__(self, number, source: str, code_type=CODE):
        self.number = number
        self.source = source.upper()
        self.op = None
        self.dst = None
        self.src = None
        self.code_type = code_type
        # 代码行
        self.index = 0
        self.prepare_source()

    def get_op(self):
        if self.op in OP2:
            return OP2[self.op]
        if self.op in OP1:
            return OP1[self.op]
        if self.op in OP0:
            return OP0[self.op]
        raise SyntaxError(self)

    # 获取操作数类型和其操作值
    def get_am(self, addr):
        global marks
        if not addr:
            return None, None
        if addr in marks:
            # 一行代码占3个字节
            return pin.AM_INS, marks[addr].index * 3
        if addr in REGISTERS:
            return pin.AM_REG, REGISTERS[addr]
        if re.match(r'^[0-9]+$', addr):
            return pin.AM_INS, int(addr)
        if re.match(r'^0X[0-9A-F]+$', addr):
            return pin.AM_INS, int(addr, 16)
        # 匹配直接寻址,内存单元取址送出10进制
        match = re.match(r'^\[([0-9]+)\]$', addr)
        if match:
            return pin.AM_DIR, int(match.group(1))
        # 匹配直接寻址,内存单元取址送出16进制
        match = re.match(r'^\[0X([0-9A-F]+)\]$', addr)
        if match:
            return pin.AM_DIR, int(match.group(1), 16)
        # 寄存器间接寻址,即将寄存器中的值作为ROM下标取出值送出
        match = re.match(r'^\[(.+)\]$', addr)
        if match and match.group(1) in REGISTERS:
            return pin.AM_RAM, REGISTERS[match.group(1)]
        raise SyntaxError(self)

    # 文本预处理,获取到指令-源操作数-目的操作数
    def prepare_source(self):
        if self.source.endswith(":"):
            self.type = self.LABEL
            self.name = self.source.strip(':')
            return
        # 逗号分割,如果大于2就是错误
        tup = self.source.split(',')
        if len(tup) > 2:
            raise SyntaxError(self)
        if len(tup) == 2:
            self.src = tup[1].strip()
        # 将指令和操作数分开
        tup = re.split(r' +', tup[0])
        if len(tup) > 2:
            raise SyntaxError(self)
        elif len(tup) == 2:
            self.dst = tup[1].strip()
        self.op = tup[0].strip()

    # 计算指令-目的操作数-源操作数的二进制值
    def compile_code(self):
        op = self.get_op()
        amd, dst = self.get_am(self.dst)
        ams, src = self.get_am(self.src)
        if src is not None and (amd, ams) not in ASM.INSTRUCTIONS[2][op]:
            raise SyntaxError(self)
        if src is None and dst and amd not in ASM.INSTRUCTIONS[1][op]:
            raise SyntaxError(self)
        if src is None and dst is None and op not in ASM.INSTRUCTIONS[0]:
            raise SyntaxError(self)
        amd = amd or 0
        ams = ams or 0
        dst = dst or 0
        src = src or 0
        if op in OP2SET:
            ir = op | (amd << 2) | ams
        elif op in OP1SET:
            ir = op | amd
        else:
            ir = op
        return [ir, dst, src]

    def __repr__(self):
        return f'[{self.number}] - {self.source}'


class SyntaxError(Exception):
    def __init__(self, code: Code, *args, **kwargs):
        super.__init__(*args, **kwargs)
        self.code = code


def compile_program():
    global codes
    global marks
    with open(inputFileName, encoding='utf8') as file:
        lines = file.readlines()
    # 遍历行
    for index, line in enumerate(lines):
        # 去掉空格符
        source = line.strip()
        # 去掉分号及后的备注,分号就是标识代码用的(简版),冒号是标识LAB的
        if ';' in source:
            match = annotation.match(source)
            source = match.group(1)
            code = Code(index + 1, source)
            codes.append(code)
            continue
        if source.endswith(":"):
            codes.append(Code(index + 2, source, Code.LABEL))
            continue
        if not source:
            continue
    result = []
    current = None
    # 从后往前遍历代码行
    for var in range(len(codes) - 1, -1, -1):
        code = codes[var]
        if code.code_type == Code.CODE:
            current = code
            result.insert(0, code)
            continue
        if code.type == Code.LABEL:
            # 这里指向的是code的引用,后边的遍历改index不影响
            marks[code.name] = current
            continue
        raise SyntaxError(code)
    # 更新索引index
    for index, var in enumerate(result):
        var.index = index
    with open(outputFileName, 'wb') as file:
        for code in result:
            values = code.compile_code()
            for value in values:
                if value is not None:
                    result = value.to_bytes(1, byteorder='little')
                    file.write(result)


def main():
    try:
        compile_program()
    except SyntaxError as e:
        print(f'Syntax Error at {e.code}')
    print(f'program compile finished')


if __name__ == '__main__':
    main()


汇编定义代码assembly.py

主要定义,不同指令的电路组合状态。电路组合状态从管脚中定义的基本电路控制单元,或运算得到。

import pin

# 汇编

# 取址
FETCH = [
    pin.PC_OUT | pin.MAR_IN,
    pin.RAM_OUT | pin.IR_IN | pin.PC_INC,

    pin.PC_OUT | pin.MAR_IN,
    pin.RAM_OUT | pin.DST_IN | pin.PC_INC,

    pin.PC_OUT | pin.MAR_IN,
    pin.RAM_OUT | pin.SRC_IN | pin.PC_INC,
]
# 指令定义
MOV = 0 | pin.ADDR2
ADD = (1 << pin.ADDR2_SHIFT) | pin.ADDR2
SUB = (2 << pin.ADDR2_SHIFT) | pin.ADDR2
CMP = (3 << pin.ADDR2_SHIFT) | pin.ADDR2
AND = (4 << pin.ADDR2_SHIFT) | pin.ADDR2
OR = (5 << pin.ADDR2_SHIFT) | pin.ADDR2
XOR = (6 << pin.ADDR2_SHIFT) | pin.ADDR2

INC = (0 << pin.ADDR1_SHIFT) | pin.ADDR1
DEC = (1 << pin.ADDR1_SHIFT) | pin.ADDR1
NOT = (2 << pin.ADDR1_SHIFT) | pin.ADDR1
JMP = (3 << pin.ADDR1_SHIFT) | pin.ADDR1
# 条件转移
# 溢出和非溢出
JO = (4 << pin.ADDR1_SHIFT) | pin.ADDR1
JNO = (5 << pin.ADDR1_SHIFT) | pin.ADDR1
# 零和非0
JZ = (6 << pin.ADDR1_SHIFT) | pin.ADDR1
JNZ = (7 << pin.ADDR1_SHIFT) | pin.ADDR1
# 奇数和非奇数
JP = (8 << pin.ADDR1_SHIFT) | pin.ADDR1
JNP = (9 << pin.ADDR1_SHIFT) | pin.ADDR1
PUSH = (10 << pin.ADDR1_SHIFT) | pin.ADDR1
POP = (11 << pin.ADDR1_SHIFT) | pin.ADDR1
CALL = (12 << pin.ADDR1_SHIFT) | pin.ADDR1
INT = (13 << pin.ADDR1_SHIFT) | pin.ADDR1

# SUB = (2 << pin.ADDR2_SHIFT) | pin.ADDR2
# SUB = (2 << pin.ADDR2_SHIFT) | pin.ADDR2
# SUB = (2 << pin.ADDR2_SHIFT) | pin.ADDR2
# 0操作数指令
# 啥也不干
NOP = 0
RET = 1
# 中断返回
IRET = 2
# 开中断
STI = 3
# 关中断
CLI = 4
# 停止
HLT = 0x3f  # 111111

INSTRUCTIONS = {
    2: {
        MOV: {
            # 立即数寻址,将立即数放入SRC寄存器,存入DST种存放的具体寄存器(地址)中,这里只定义指令动作,具体执行之后解析
            (pin.AM_REG, pin.AM_INS): [
                pin.DST_W | pin.SRC_OUT,
            ],
            (pin.AM_REG, pin.AM_REG): [
                pin.DST_W | pin.SRC_R,
            ],
            (pin.AM_REG, pin.AM_DIR): [
                pin.SRC_OUT | pin.MAR_IN,
                pin.DST_W | pin.RAM_OUT,
            ],
            (pin.AM_REG, pin.AM_RAM): [
                pin.SRC_R | pin.MAR_IN,
                pin.DST_W | pin.RAM_OUT,
            ],
            (pin.AM_DIR, pin.AM_INS): [
                pin.DST_OUT | pin.MAR_IN,
                pin.RAM_IN | pin.SRC_OUT,
            ],
            (pin.AM_DIR, pin.AM_DIR): [
                pin.SRC_OUT | pin.MAR_IN,
                pin.RAM_OUT | pin.T1_IN,
                pin.DST_OUT | pin.MAR_IN,
                pin.RAM_IN | pin.T1_OUT,
            ],
            (pin.AM_DIR, pin.AM_RAM): [
                pin.SRC_R | pin.MAR_IN,
                pin.RAM_OUT | pin.T1_IN,
                pin.DST_OUT | pin.MAR_IN,
                pin.RAM_IN | pin.T1_OUT,
            ],
            (pin.AM_RAM, pin.AM_INS): [
                pin.DST_R | pin.MAR_IN,
                pin.RAM_IN | pin.SRC_OUT,
            ],
            (pin.AM_RAM, pin.AM_REG): [
                pin.DST_R | pin.MAR_IN,
                pin.RAM_IN | pin.SRC_R,
            ],
            (pin.AM_RAM, pin.AM_DIR): [
                pin.SRC_OUT | pin.MAR_IN,
                pin.RAM_OUT | pin.T1_IN,
                pin.DST_R | pin.MAR_IN,
                pin.RAM_IN | pin.T1_OUT,
            ],
            (pin.AM_RAM, pin.AM_RAM): [
                pin.SRC_R | pin.MAR_IN,
                pin.RAM_OUT | pin.T1_IN,
                pin.DST_R | pin.MAR_IN,
                pin.RAM_IN | pin.T1_OUT,
            ],
        },
        ADD: {
            (pin.AM_REG, pin.AM_INS): [
                pin.DST_R | pin.A_IN,
                pin.SRC_OUT | pin.B_IN,
                pin.OP_ADD | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW,
            ],
            (pin.AM_REG, pin.AM_REG): [
                pin.DST_R | pin.A_IN,
                pin.SRC_R | pin.B_IN,
                pin.OP_ADD | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW,
            ],
        },
        CMP: {
            (pin.AM_REG, pin.AM_INS): [
                pin.DST_R | pin.A_IN,
                pin.SRC_OUT | pin.B_IN,
                pin.OP_SUB | pin.ALU_PSW,
            ],
            (pin.AM_REG, pin.AM_REG): [
                pin.DST_R | pin.A_IN,
                pin.SRC_R | pin.B_IN,
                pin.OP_SUB | pin.ALU_PSW,

            ],
        },
        SUB: {
            (pin.AM_REG, pin.AM_INS): [
                pin.DST_R | pin.A_IN,
                pin.SRC_OUT | pin.B_IN,
                pin.OP_SUB | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
            (pin.AM_REG, pin.AM_REG): [
                pin.DST_R | pin.A_IN,
                pin.SRC_R | pin.B_IN,
                pin.OP_SUB | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
        },
        AND: {
            (pin.AM_REG, pin.AM_INS): [
                pin.DST_R | pin.A_IN,
                pin.SRC_OUT | pin.B_IN,
                pin.OP_AND | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
            (pin.AM_REG, pin.AM_REG): [
                pin.DST_R | pin.A_IN,
                pin.SRC_R | pin.B_IN,
                pin.OP_AND | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
        },
        OR: {
            (pin.AM_REG, pin.AM_INS): [
                pin.DST_R | pin.A_IN,
                pin.SRC_OUT | pin.B_IN,
                pin.OP_OR | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
            (pin.AM_REG, pin.AM_REG): [
                pin.DST_R | pin.A_IN,
                pin.SRC_R | pin.B_IN,
                pin.OP_OR | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
        },
        XOR: {
            (pin.AM_REG, pin.AM_INS): [
                pin.DST_R | pin.A_IN,
                pin.SRC_OUT | pin.B_IN,
                pin.OP_XOR | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
            (pin.AM_REG, pin.AM_REG): [
                pin.DST_R | pin.A_IN,
                pin.SRC_R | pin.B_IN,
                pin.OP_XOR | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
        },
    },
    1: {
        INC: {
            pin.AM_REG: [
                pin.DST_R | pin.A_IN,
                pin.OP_INC | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW
            ],
        },
        DEC: {
            pin.AM_REG: [
                pin.DST_R | pin.A_IN,
                pin.OP_DEC | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW,
            ],
        },
        NOT: {
            pin.AM_REG: [
                pin.DST_R | pin.A_IN,
                pin.OP_NOT | pin.ALU_OUT | pin.DST_W | pin.ALU_PSW,
            ],
        },
        JMP: {
            # 立即数写入到PC
            pin.AM_INS: [
                pin.DST_OUT | pin.PC_IN
            ],
        },
        JO: {
            pin.AM_INS: [
                pin.DST_OUT | pin.PC_IN
            ],
        },
        JNO: {
            pin.AM_INS: [
                pin.DST_OUT | pin.PC_IN
            ],
        },
        JZ: {
            pin.AM_INS: [
                pin.DST_OUT | pin.PC_IN
            ],
        },
        JNZ: {
            pin.AM_INS: [
                pin.DST_OUT | pin.PC_IN
            ],
        },
        JP: {
            pin.AM_INS: [
                pin.DST_OUT | pin.PC_IN
            ],
        },
        JNP: {
            pin.AM_INS: [
                pin.DST_OUT | pin.PC_IN
            ],
        },
        PUSH: {
            pin.AM_INS: [
                # 栈顶指针减一获取栈地址
                pin.SP_OUT | pin.A_IN,
                pin.SP_IN | pin.ALU_OUT | pin.OP_DEC,
                pin.SP_OUT | pin.MAR_IN,
                # 栈段地址送到MSR寄存器
                pin.SS_OUT | pin.MSR_IN,
                # 读取目的寄存器的值到RAM,地址由MSR+MAR
                pin.DST_OUT | pin.RAM_IN,
                # 恢复MSR到代码段
                pin.CS_OUT | pin.MSR_IN,
            ],
            pin.AM_REG: [
                # 栈顶指针减一获取栈地址
                pin.SP_OUT | pin.A_IN,
                pin.SP_IN | pin.ALU_OUT | pin.OP_DEC,
                pin.SP_OUT | pin.MAR_IN,
                # 栈段地址送到MSR寄存器
                pin.SS_OUT | pin.MSR_IN,
                # 读取目的寄存器的值到RAM,地址由MSR+MAR
                pin.DST_R | pin.RAM_IN,
                # 恢复MSR到代码段
                pin.CS_OUT | pin.MSR_IN,
            ],
        },
        POP: {
            pin.AM_REG: [
                # 栈段地址送到MSR寄存器
                pin.SS_OUT | pin.MSR_IN,
                pin.SP_OUT | pin.MAR_IN,
                # RAM读取值到目的寄存器,地址由MSR+MAR
                pin.DST_W | pin.RAM_OUT,
                pin.SP_OUT | pin.A_IN,
                pin.SP_IN | pin.ALU_OUT | pin.OP_INC,
                # 恢复MSR到代码段
                pin.CS_OUT | pin.MSR_IN,
            ],
        },
        CALL: {
            pin.AM_INS: [
                # 栈顶指针减一获取栈地址
                pin.SP_OUT | pin.A_IN,
                pin.SP_IN | pin.ALU_OUT | pin.OP_DEC,
                pin.SP_OUT | pin.MAR_IN,
                # 栈段地址送到MSR寄存器
                pin.SS_OUT | pin.MSR_IN,
                # 保存当前pc到RAM
                pin.PC_OUT | pin.RAM_IN,
                # 读取目的寄存器的值PC
                pin.DST_OUT | pin.PC_IN,
                # 恢复MSR到代码段
                pin.CS_OUT | pin.MSR_IN,
            ],
            pin.AM_REG: [
                # 栈顶指针减一获取栈地址
                pin.SP_OUT | pin.A_IN,
                pin.SP_IN | pin.ALU_OUT | pin.OP_DEC,
                pin.SP_OUT | pin.MAR_IN,
                # 栈段地址送到MSR寄存器
                pin.SS_OUT | pin.MSR_IN,
                # 保存当前pc到RAM
                pin.PC_OUT | pin.RAM_IN,
                # 读取目的寄存器的值PC
                pin.DST_R | pin.PC_IN,
                # 恢复MSR到代码段
                pin.CS_OUT | pin.MSR_IN,
            ],
        },
        INT: {
            pin.AM_INS: [
                # 栈顶指针减一获取栈地址
                pin.SP_OUT | pin.A_IN,
                pin.SP_IN | pin.ALU_OUT | pin.OP_DEC,
                pin.SP_OUT | pin.MAR_IN,
                # 栈段地址送到MSR寄存器
                pin.SS_OUT | pin.MSR_IN,
                # 保存当前pc到RAM
                pin.PC_OUT | pin.RAM_IN,
                # 读取目的寄存器的值PC
                pin.DST_OUT | pin.PC_IN,
                # 恢复MSR到代码段
                pin.CS_OUT | pin.MSR_IN | pin.ALU_PSW | pin.ALU_CLI,
            ],
            pin.AM_REG: [
                # 栈顶指针减一获取栈地址
                pin.SP_OUT | pin.A_IN,
                pin.SP_IN | pin.ALU_OUT | pin.OP_DEC,
                pin.SP_OUT | pin.MAR_IN,
                # 栈段地址送到MSR寄存器
                pin.SS_OUT | pin.MSR_IN,
                # 保存当前pc到RAM
                pin.PC_OUT | pin.RAM_IN,
                # 读取目的寄存器的值PC
                pin.DST_R | pin.PC_IN,
                # 恢复MSR到代码段
                pin.CS_OUT | pin.MSR_IN | pin.ALU_PSW | pin.ALU_CLI,
            ],
        },

    },
    0: {
        NOP: [pin.CYC],
        HLT: [pin.HLT],
        RET: [
            # 栈段地址送到MSR寄存器
            pin.SS_OUT | pin.MSR_IN,
            pin.SP_OUT | pin.MAR_IN,
            # RAM读取值写回PC计数器
            pin.PC_IN | pin.RAM_OUT,
            pin.SP_OUT | pin.A_IN,
            pin.SP_IN | pin.ALU_OUT | pin.OP_INC,
            # 恢复MSR到代码段
            pin.CS_OUT | pin.MSR_IN,
        ],
        IRET: [
            # 栈段地址送到MSR寄存器
            pin.SS_OUT | pin.MSR_IN,
            pin.SP_OUT | pin.MAR_IN,
            # RAM读取值写回PC计数器
            pin.PC_IN | pin.RAM_OUT,
            pin.SP_OUT | pin.A_IN,
            pin.SP_IN | pin.ALU_OUT | pin.OP_INC,
            # 恢复MSR到代码段
            pin.CS_OUT | pin.MSR_IN | pin.ALU_PSW | pin.ALU_STI,
        ],
        STI: [
            pin.ALU_PSW | pin.ALU_STI,
        ],
        CLI: [
            pin.ALU_PSW | pin.ALU_CLI,
        ],
    }
}

实现的指令

二地址指令

  • MOV
  • ADD
  • CMP
  • SUB
  • AND
  • OR
  • XOR

一地址指令

  • INC
  • DEC
  • NOT
  • JMP 跳转
  • JO 溢出跳转
  • JNO 非溢出跳转
  • JZ 零转
  • JNZ
  • JP 奇偶
  • JNP
  • PUSH
  • POP
  • CALL
  • INT中断(内部的)

零地址指令

  • NOP
  • HLT
  • RET call对应恢复
  • IRET 中断恢复
  • STI start中断
  • CLI close中断

演示

下面演示汇编代码的执行。

MOV D,3;
MOV C,4;
ADD D,C;
HLT;

该代码先被汇编解析代码编译到program.bin的二进制文件中,加载CPU的RAM,作为程序源。
然后控制器代码生成的二进制文件加载到CPU的ROM中,作为指令源。
最后,加法的输出结果是一个是7,在ALU旁输出和D寄存器中都是。。。
e56a756c-f8ab-4a79-833e-f836edce129f.gif

尾声

有了能支持汇编代码的基础,在此基础上,我们能够持续向上“生万物”,这是一条辉煌而又艰辛的道路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/727007.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue实现指定div右键显示菜单,并实现复制内容到粘贴板

效果图 实现 全有注释&#xff0c;代码如下&#xff1a; <!--指定的需要右键菜单的div--><div class"content" contextmenu.prevent"showMenu($event, item)"><span class"content_msg">{{item}}</span></div>&…

Python如何批量将图片以超链接的形式插入Excel

【研发背景】 在日常办公中&#xff0c;我们经常需要将图片插入进Excel中&#xff0c;但是如果插入的图片太多的话&#xff0c;就会导致Excel的文件内存越来越大&#xff0c;但是如果我直插入图片的路径&#xff0c;或者只是更改某一列的数据设置为超链接&#xff0c;这样的话&…

拉格朗日乘子法

首先定义一个原始最优化问题&#xff1a; 引入广义拉格朗日函数&#xff0c;将约束问题转换为无约束优化问题&#xff1a; 参数和自变量x求偏导&#xff0c;分别为零&#xff0c;就能解出一个值&#xff08;极大值或者极小值&#xff09;。 直接求解有时候非常困难&#xff0c…

企业和公司扩展WordPress网站的4种方法

Netflix 通过邮递观看 DVD。Apple 是一家计算机公司&#xff0c;而不是电话公司。WordPress 是一个博客平台。 这三个陈述有什么共同点&#xff1f;十年前都是对的&#xff0c;现在都不是了。如今&#xff0c;Netflix 以数字方式提供原创内容而闻名。Apple 正在推出其广受欢迎…

从零开始 Spring Boot 62:过滤实体和关系

从零开始 Spring Boot 62&#xff1a;过滤实体和关系 图源&#xff1a;简书 (jianshu.com) JPA&#xff08;Hibernate&#xff09;中有一些注解可以用于筛选实体和关系&#xff0c;本文将介绍这些注解。 Where 有时候&#xff0c;我们希望对表中的数据进行“软删除”&#x…

Meta为全天候AR眼镜设计了AI系统的八大指导方针

众所周知&#xff0c;Meta不仅局限在Quest这类VR头显上&#xff0c;同时还在打造更轻量化的AR眼镜&#xff0c;目标就是让产品更好的融入到人们的日常生活中去。除了硬件上轻量化以外&#xff0c;在功能和交互体验上也至关重要&#xff0c;例如自然交互方式&#xff0c;比如手势…

什么是人工智能大模型?

目录 1. 人工智能大模型的概述&#xff1a;2. 典型的人工智能大模型&#xff1a;3. 人工智能大模型的应用领域&#xff1a;4. 人工智能大模型的挑战与未来&#xff1a;5. 人工智能大模型的开发和应用&#xff1a;6. 人工智能大模型的学习资源&#xff1a; 人工智能大模型是指具…

MySQL(创建、删除、查询数据库以及依据数据类型建表)

一、 1.创建数据库&#xff0c; mysql> CREATE DATABASE IF NOT EXISTS SECOND_DB; Query OK, 1 row affected (0.01 sec)2.删除数据库&#xff0c; mysql> DROP DATABASE IF EXISTS SECOND_DB; Query OK, 0 rows affected (0.11 sec)3.查询创建数据的语句&#xff0c;…

优化模型案例

案例1 生产决策问题 &#xff08;一个简单的线性规划问题&#xff09; 某工厂在计划期内要安排I、II两种产品生产。生产单位产品所需的设备台时&#xff0c;A&#xff0c;B两种原材料的消耗&#xff0c;资源的限制以及单件产品利润如下表所示 问工厂应分别生产多少单位产品I和…

修改开发板内核启动日志输出级别

1.用超级用户权限输入命令 2.将verbosity 1改成7&#xff0c;将console(控制&#xff09; both 改成 serial&#xff08;串口控制),然后wq保存退出 3.输入命令sudo reboot 查看启动日志输出级别

华为云CodeArts IDE Online:让你随时随地畅享云端编码乐趣

软件开发是把人类智慧以代码方式表达出来的过程&#xff0c;面对不可预知且快速变化的世界&#xff0c;开发者面临着前所未有的巨大挑战。例如&#xff0c;软件交付周期和迭代速度要求更高、开发者需要快速学习各种新技术、开发时间碎片化严重、分散的交付团队协同困难、开发与…

微信小程序接入第三方后,不能及时发送客服消息

微信小程序接入第三方后&#xff0c;不能及时发送客服消息 1、要把这里关了&#xff0c;后台才能及时收到用户发来的消息

机器学习16:使用 TensorFlow 进行神经网络编程练习

在【机器学习15】中&#xff0c;笔者介绍了神经网络的基本原理。在本篇中&#xff0c;我们使用 TensorFlow 来训练、验证神经网络模型&#xff0c;并探索不同 “层数节点数” 对模型预测效果的影响&#xff0c;以便读者对神经网络模型有一个更加直观的认识。 目录 1.导入依赖…

Dubbo入门详解,API方式与SpringBoot方式

Hi I’m Shendi Dubbo入门详解&#xff0c;API方式与SpringBoot方式 在之前一直使用的自己编写的RPC框架&#xff0c;因为是自己编写的&#xff0c;功能上比不过市面上的开源框架&#xff0c;包括后面Spring Cloud系列&#xff0c;如果还用自己编写的话就需要去做整合之类的&am…

OpenResume一个功能强大的开源简历生成器,太炫了

OpenResume 是一个功能强大的开源简历生成器和简历解析器。目标是为每个人提供免费的现代专业简历设计&#xff0c;让任何人都能充满信心地申请工作。 核心优势 「实时UI更新」:当输入简历信息时&#xff0c;简历 PDF 会实时更新&#xff0c;因此可以轻松查看最终输出。 「现…

LeetCode刷题 | 647. 回文子串、516. 最长回文子序列

647. 回文子串 给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子字符串 是字符串中的由连续字符组成的一个序列。 具有不同开始位置或结束位置的子串&#xff0c;即使是由相同的字符组成&#…

ModaHub魔搭社区:清华开源ChatGLM语言模型一键部署教程

目录 ChatGLM是什么 傻瓜式安装部署 一.下载 二、解压 ChatGLM懒人安装包 ChatGLM是什么 ChatGLM和ChatGPT类似&#xff0c;是由清华大学开发的开源大型语言模型。由于它是开源的&#xff0c;所以带来了很多的可能性&#xff0c;比如可以像Ai绘画一样自己微调模型。 目前…

老板说,给我把这个 JS React 项目迁移到 TypeScript

在我们日益发展的网络开发领域中&#xff0c;JavaScript 长期以来一直是首选的语言。它的多功能性和普及性推动了许多应用和网站取得成功。然而&#xff0c;随着项目规模和复杂性的增长&#xff0c;维护 JavaScript 代码库可能变得具有挑战性、容易出错且难以扩展。 走出来的第…

5-Spring cloud之Feign的使用——服务器上实操

5-Spring cloud之Feign的使用——服务器上实操 1. 前言2. 搭建Feign2.1 添加子模块——dog-api2.1.1 子模块结构2.1.2 pom文件2.1.3 核心接口DogClientApi 2.2 添加子模块——dog-consumer-feign-802.2.1 子模块结构2.2.2 pom文件2.2.3 yml文件2.2.4 主启动类2.2.5 controller …

Linux里git的使用

git的使用 一.前置要求1.git的安装2.注册Gitee并创建仓库 二.git三板斧 一.前置要求 1.git的安装 2.注册Gitee并创建仓库 然后记住下面的网址。 之后将仓库克隆到云服务器里。记得输入gitee的账号和密码。 查看目录&#xff0c;可以发现仓库已经在目录里了。 进入目录&#xf…