编写LED灯的驱动,创建三个设备文件,每个设备文件和一个LED灯绑定,当操作这个设备文件时只能控制设备文件对应的这盏灯。
此时没有安装led2 和led3的驱动所以会打开设备文件失败
装完以后就可以正常控制了
以下是设备现象
head.h
ubuntu@ubuntu:led$ vi test.c
ubuntu@ubuntu:led$ cat head.h
#ifndef __HEAD_H__
#define __HEAD_H__
typedef struct{
unsigned int MODER;
unsigned int OTYPER;
unsigned int OSPEEDR;
unsigned int PUPDR;
unsigned int IDR;
unsigned int ODR;
}gpio_t;
#define PHY_LED1_ADDR 0X50006000
#define PHY_LED2_ADDR 0X50007000
#define PHY_LED3_ADDR 0X50006000
#define PHY_RCC_ADDR 0X50000A28
#define LED1 _IOW('a',1,int)
#define LED2 _IOW('b',1,int)
#define LED3 _IOW('c',1,int)
#endif
test.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include "head.h"
int main(int argc, char const *argv[])
{
int a,b,c,fd1,fd2,fd3;
while(1)
{
printf("请输入两个字符\n");
printf("请选择要操作的灯1(LED1) 2(LED2) 3(LED3) 4(EXIT)\n");
scanf("%d",&a);
getchar();
if(a == 4)
return 0;
switch(a)
{
case 1:
fd1 = open("/dev/myled1", O_RDWR);
if (fd1 < 0)
{
printf("打开设备文件失败\n");
exit(-1);
}
break;
case 2:
fd2 = open("/dev/myled2", O_RDWR);
if (fd2 < 0)
{
printf("打开设备文件失败\n");
exit(-1);
}
break;
case 3:
fd3 = open("/dev/myled3", O_RDWR);
if (fd3 < 0)
{
printf("打开设备文件失败\n");
exit(-1);
}
break;
}
//从终端读取
printf("第二个字符:0(关灯) 1(开灯)\n");
scanf("%d",&b);
getchar();
switch(a)
{
case 1:
ioctl(fd1,LED1,b);
break;
case 2:
ioctl(fd2,LED2,b);
break;
case 3:
ioctl(fd3,LED3,b);
break;
}
}
close(fd1);
close(fd2);
close(fd3);
return 0;
}
led1.c
#include <linux/init.h>
#include <linux/module.h>
#include<linux/fs.h>
#include<linux/device.h>
#include<linux/cdev.h>
#include<linux/slab.h>
#include <linux/io.h>
#include "head.h"
struct cdev *cdev;//字符设备驱动对象空间首地址
unsigned int major=500;//主设备号
unsigned int minor=0;//次设备号的起始值
dev_t devno;//设备号变量
struct class *cls;//存放向上提交目录的返回值
struct device *dev;//存放向上提交设备节点信息结构体
gpio_t *vir_led1;
gpio_t *vir_led2;
gpio_t *vir_led3;
unsigned int *vir_rcc;
int mycdev_open(struct inode *inode, struct file *file)
{
unsigned int aaa=MINOR(inode->i_rdev);
file->private_data=(void *)aaa;
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
long mycdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
unsigned int aaa=(int)file->private_data;
switch (aaa)
{
case 0: // LED1
if(arg == 1)
vir_led1->ODR |= (0x1 << 10);
else
vir_led1->ODR &= (~(0x1 << 10));
break;
case 1: // LED2
if(arg == 1)
vir_led2->ODR |= (0x1 << 10);
else
vir_led2->ODR &= (~(0x1 << 10));
break;
case 2: // LED3
if(arg == 1)
vir_led3->ODR |= (0x1 << 8);
vir_led3->ODR &= (~(0x1 << 8));
break;
}
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
int mycdev_close(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
int all_led_init(void)
{
//寄存器地址的映射
vir_led1=ioremap(PHY_LED1_ADDR,sizeof(gpio_t));
if(vir_led1==NULL)
{
printk("ioremap filed:%d\n",__LINE__);
return -ENOMEM;
}
vir_rcc=ioremap(PHY_RCC_ADDR,4);
if(vir_rcc==NULL)
{
printk("ioremap filed:%d\n",__LINE__);
return -ENOMEM;
}
printk("物理地址映射成功\n");
//寄存器的初始化
//rcc
(*vir_rcc) |= (3<<4);
//led1
vir_led1->MODER &= (~(3<<20));
vir_led1->MODER |= (1<<20);
vir_led1->ODR &= (~(1<<10));
printk("寄存器初始化成功\n");
return 0;
}
// 定义操作方法结构体变量并赋值
struct file_operations fops = {
.open = mycdev_open,
.unlocked_ioctl = mycdev_ioctl,
.release = mycdev_close,
};
static int __init mycdev_init(void)
{
int ret;
//1.分配字符设备驱动对象空间 cdev_alloc
cdev = cdev_alloc();
if (!cdev) {
printk(KERN_ALERT "cdev_alloc failed\n");
return -ENOMEM;
}
printk("字符设备驱动对象空间申请成功\n");
//2.字符设备驱动对象部分初始化 cdev_init
cdev_init(cdev, &fops);
//3.申请设备号 register_chrdev_region/alloc_chrdev_region
if(major>0)//静态申请设备号
{
ret=register_chrdev_region(MKDEV(major,minor),1,"myled1");
if(ret)
{
printk("静态指定设备号失败\n");
goto out2;
}
}
else//动态申请设备号
{
ret=alloc_chrdev_region(&devno,minor,1,"myled1");
if(ret)
{
printk("动态申请设备号失败\n");
goto out2;
}
major=MAJOR(devno);//根据设备号得到主设备号
minor=MINOR(devno);//根据设备号得到次设备号
}
printk("申请设备号成功\n");
//4.注册字符设备驱动对象 cdev_add()
ret=cdev_add(cdev,MKDEV(major,minor),1);
if(ret)
{
printk("注册字符设备驱动对象失败\n");
goto out3;
}
printk("注册字符设备驱动对象成功\n");
//5.向上提交目录
cls=class_create(THIS_MODULE,"myled1");
if(IS_ERR(cls))
{
printk("向上提交目录失败\n");
ret=-PTR_ERR(cls);
goto out4;
}
printk("向上提交目录成功\n");
//6.向上提交设备节点
dev=device_create(cls,NULL,MKDEV(major,minor),NULL,"myled%d",minor+1);
if(IS_ERR(dev))
{
printk("向上提交节点信息失败\n");
ret=-PTR_ERR(dev);
goto out5;
}
printk("向上提交设备节点信息成功\n");
//寄存器映射以及初始化
all_led_init();
return 0;
out5:
//销毁上面提交的设备信息
device_destroy(cls,MKDEV(major,minor));
class_destroy(cls);
out4:
cdev_del(cdev);
out3:
unregister_chrdev_region(MKDEV(major,minor),1);
out2:
kfree(cdev);
out1:
return ret;
}
static void __exit mycdev_exit(void)
{
//1.销毁设备信息 device_destroy
device_destroy(cls,MKDEV(major,minor));
//2.销毁目录 class_destroy
class_destroy(cls);
//3.注销对象 cdev_del()
cdev_del(cdev);
//4.释放设备号 unregister_chrdev_region()
unregister_chrdev_region(MKDEV(major,minor),1);
//5.释放对象空间 kfree()
kfree(cdev);
}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");
led2.c
#include <linux/init.h>
#include <linux/module.h>
#include<linux/fs.h>
#include<linux/device.h>
#include<linux/cdev.h>
#include<linux/slab.h>
#include <linux/io.h>
#include "head.h"
struct cdev *cdev;//字符设备驱动对象空间首地址
unsigned int major=500;//主设备号
unsigned int minor=1;//次设备号的起始值
dev_t devno;//设备号变量
struct class *cls;//存放向上提交目录的返回值
struct device *dev;//存放向上提交设备节点信息结构体
gpio_t *vir_led1;
gpio_t *vir_led2;
gpio_t *vir_led3;
unsigned int *vir_rcc;
int mycdev_open(struct inode *inode, struct file *file)
{
unsigned int aaa=MINOR(inode->i_rdev);
file->private_data=(void *)aaa;
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
long mycdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
unsigned int aaa=(int)file->private_data;
switch (aaa)
{
case 0: // LED1
if(arg == 1)
vir_led1->ODR |= (0x1 << 10);
else
vir_led1->ODR &= (~(0x1 << 10));
break;
case 1: // LED2
if(arg == 1)
vir_led2->ODR |= (0x1 << 10);
else
vir_led2->ODR &= (~(0x1 << 10));
break;
case 2: // LED3
if(arg == 1)
vir_led3->ODR |= (0x1 << 8);
vir_led3->ODR &= (~(0x1 << 8));
break;
}
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
int mycdev_close(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
int all_led_init(void)
{
//寄存器地址的映射
vir_led2=ioremap(PHY_LED2_ADDR,sizeof(gpio_t));
if(vir_led2==NULL)
{
printk("ioremap filed:%d\n",__LINE__);
return -ENOMEM;
}
vir_rcc=ioremap(PHY_RCC_ADDR,4);
if(vir_rcc==NULL)
{
printk("ioremap filed:%d\n",__LINE__);
return -ENOMEM;
}
printk("物理地址映射成功\n");
//寄存器的初始化
//rcc
(*vir_rcc) |= (3<<4);
//led2
vir_led2->MODER &= (~(3<<20));
vir_led2->MODER |= (1<<20);
vir_led2->ODR &= (~(1<<10));
printk("寄存器初始化成功\n");
return 0;
}
// 定义操作方法结构体变量并赋值
struct file_operations fops = {
.open = mycdev_open,
.unlocked_ioctl = mycdev_ioctl,
.release = mycdev_close,
};
static int __init mycdev_init(void)
{
int ret;
//1.分配字符设备驱动对象空间 cdev_alloc
cdev = cdev_alloc();
if (!cdev) {
printk(KERN_ALERT "cdev_alloc failed\n");
return -ENOMEM;
}
printk("字符设备驱动对象空间申请成功\n");
//2.字符设备驱动对象部分初始化 cdev_init
cdev_init(cdev, &fops);
//3.申请设备号 register_chrdev_region/alloc_chrdev_region
if(major>0)//静态申请设备号
{
ret=register_chrdev_region(MKDEV(major,minor),1,"myled2");
if(ret)
{
printk("静态指定设备号失败\n");
goto out2;
}
}
else//动态申请设备号
{
ret=alloc_chrdev_region(&devno,minor,1,"myled2");
if(ret)
{
printk("动态申请设备号失败\n");
goto out2;
}
major=MAJOR(devno);//根据设备号得到主设备号
minor=MINOR(devno);//根据设备号得到次设备号
}
printk("申请设备号成功\n");
//4.注册字符设备驱动对象 cdev_add()
ret=cdev_add(cdev,MKDEV(major,minor),1);
if(ret)
{
printk("注册字符设备驱动对象失败\n");
goto out3;
}
printk("注册字符设备驱动对象成功\n");
//5.向上提交目录
cls=class_create(THIS_MODULE,"myled2");
if(IS_ERR(cls))
{
printk("向上提交目录失败\n");
ret=-PTR_ERR(cls);
goto out4;
}
printk("向上提交目录成功\n");
//6.向上提交设备节点
dev=device_create(cls,NULL,MKDEV(major,minor),NULL,"myled%d",minor+1);
if(IS_ERR(dev))
{
printk("向上提交节点信息失败\n");
ret=-PTR_ERR(dev);
goto out5;
}
printk("向上提交设备节点信息成功\n");
//寄存器映射以及初始化
all_led_init();
return 0;
out5:
//销毁上面提交的设备信息
device_destroy(cls,MKDEV(major,minor));
class_destroy(cls);
out4:
cdev_del(cdev);
out3:
unregister_chrdev_region(MKDEV(major,minor),1);
out2:
kfree(cdev);
out1:
return ret;
}
static void __exit mycdev_exit(void)
{
//1.销毁设备信息 device_destroy
device_destroy(cls,MKDEV(major,minor));
//2.销毁目录 class_destroy
class_destroy(cls);
//3.注销对象 cdev_del()
cdev_del(cdev);
//4.释放设备号 unregister_chrdev_region()
unregister_chrdev_region(MKDEV(major,minor),1);
//5.释放对象空间 kfree()
kfree(cdev);
}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");
led3.c
#include <linux/init.h>
#include <linux/module.h>
#include<linux/fs.h>
#include<linux/device.h>
#include<linux/cdev.h>
#include<linux/slab.h>
#include <linux/io.h>
#include "head.h"
struct cdev *cdev;//字符设备驱动对象空间首地址
unsigned int major=500;//主设备号
unsigned int minor=2;//次设备号的起始值
dev_t devno;//设备号变量
struct class *cls;//存放向上提交目录的返回值
struct device *dev;//存放向上提交设备节点信息结构体
gpio_t *vir_led1;
gpio_t *vir_led2;
gpio_t *vir_led3;
unsigned int *vir_rcc;
int mycdev_open(struct inode *inode, struct file *file)
{
unsigned int aaa=MINOR(inode->i_rdev);
file->private_data=(void *)aaa;
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
long mycdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
unsigned int aaa=(int)file->private_data;
switch (aaa)
{
case 0: // LED1
if(arg == 1)
vir_led1->ODR |= (0x1 << 10);
else
vir_led1->ODR &= (~(0x1 << 10));
break;
case 1: // LED2
if(arg == 1)
vir_led2->ODR |= (0x1 << 10);
else
vir_led2->ODR &= (~(0x1 << 10));
break;
case 2: // LED3
if(arg == 1)
vir_led3->ODR |= (0x1 << 8);
else
vir_led3->ODR &= (~(0x1 << 8));
break;
}
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
int mycdev_close(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
int all_led_init(void)
{
//寄存器地址的映射
vir_led3=ioremap(PHY_LED3_ADDR,sizeof(gpio_t));
if(vir_led3==NULL)
{
printk("ioremap filed:%d\n",__LINE__);
return -ENOMEM;
}
vir_rcc=ioremap(PHY_RCC_ADDR,4);
if(vir_rcc==NULL)
{
printk("ioremap filed:%d\n",__LINE__);
return -ENOMEM;
}
printk("物理地址映射成功\n");
//寄存器的初始化
//rcc
(*vir_rcc) |= (3<<4);
//led3
vir_led3->MODER &= (~(3<<16));
vir_led3->MODER |= (1<<16);
vir_led3->ODR &= (~(1<<8));
printk("寄存器初始化成功\n");
return 0;
}
// 定义操作方法结构体变量并赋值
struct file_operations fops = {
.open = mycdev_open,
.unlocked_ioctl = mycdev_ioctl,
.release = mycdev_close,
};
static int __init mycdev_init(void)
{
int ret;
//1.分配字符设备驱动对象空间 cdev_alloc
cdev = cdev_alloc();
if (!cdev) {
printk(KERN_ALERT "cdev_alloc failed\n");
return -ENOMEM;
}
printk("字符设备驱动对象空间申请成功\n");
//2.字符设备驱动对象部分初始化 cdev_init
cdev_init(cdev, &fops);
//3.申请设备号 register_chrdev_region/alloc_chrdev_region
if(major>0)//静态申请设备号
{
ret=register_chrdev_region(MKDEV(major,minor),1,"myled3");
if(ret)
{
printk("静态指定设备号失败\n");
goto out2;
}
}
else//动态申请设备号
{
ret=alloc_chrdev_region(&devno,minor,1,"myled3");
if(ret)
{
printk("动态申请设备号失败\n");
goto out2;
}
major=MAJOR(devno);//根据设备号得到主设备号
minor=MINOR(devno);//根据设备号得到次设备号
}
printk("申请设备号成功\n");
//4.注册字符设备驱动对象 cdev_add()
ret=cdev_add(cdev,MKDEV(major,minor),1);
if(ret)
{
printk("注册字符设备驱动对象失败\n");
goto out3;
}
printk("注册字符设备驱动对象成功\n");
//5.向上提交目录
cls=class_create(THIS_MODULE,"myled3");
if(IS_ERR(cls))
{
printk("向上提交目录失败\n");
ret=-PTR_ERR(cls);
goto out4;
}
printk("向上提交目录成功\n");
//6.向上提交设备节点
dev=device_create(cls,NULL,MKDEV(major,minor),NULL,"myled%d",minor+1);
if(IS_ERR(dev))
{
printk("向上提交节点信息失败\n");
ret=-PTR_ERR(dev);
goto out5;
}
printk("向上提交设备节点信息成功\n");
//寄存器映射以及初始化
all_led_init();
return 0;
out5:
//销毁上面提交的设备信息
device_destroy(cls,MKDEV(major,minor));
class_destroy(cls);
out4:
cdev_del(cdev);
out3:
unregister_chrdev_region(MKDEV(major,minor),1);
out2:
kfree(cdev);
out1:
return ret;
}
static void __exit mycdev_exit(void)
{
//1.销毁设备信息 device_destroy
device_destroy(cls,MKDEV(major,minor));
//2.销毁目录 class_destroy
class_destroy(cls);
//3.注销对象 cdev_del()
cdev_del(cdev);
//4.释放设备号 unregister_chrdev_region()
unregister_chrdev_region(MKDEV(major,minor),1);
//5.释放对象空间 kfree()
kfree(cdev);
}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");
Makefile
arch?=arm
modname?=demo
#指定内核顶层目录的路径
ifeq ($(arch),arm)
KERNELDIR:=/home/ubuntu/FSMP1A/linux-stm32mp-5.10.61-stm32mp-r2-r0/linux-5.10.61 #编译为ARM架构的内核路径
else
KERNELDIR:=/lib/modules/$(shell uname -r)/build #编译生成x86架构文件的内核路径
endif
#指定当前源码所在的路径
PWD:=$(shell pwd) #将shell命令pwd的执行结果赋值给变量PWD
#指定使用的符号表文件的路径
KBUILD_EXTRA_SYMBOLS +=/home/ubuntu/23031_driver/day2/1/Module.symvers
all:
#make modules表示进行模块化编译
#make -C $(KERNELDIR)先切换路径到KERNELDIR下,按照这个路径下Makefile的规则进行make
#M=$(PWD)指定模块化编译的路径
make -C $(KERNELDIR) M=$(PWD) modules
clean:
#编译清除
make -C $(KERNELDIR) M=$(PWD) clean
#将指定的.o文件独立链接为模块文件
obj-m:=$(modname).o