文章目录
- 四、完全背包
- 01背包的核心代码
- 完全背包的核心代码
- 12、零钱兑换 II
- 13、组合总和 Ⅳ
四、完全背包
完全背包:每一个物品可以选无限次
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件
01背包的核心代码
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
完全背包的核心代码
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
- 在一维数组中,01背包问题必须先遍历物品,后遍历背包。完全背包两个for循环嵌套顺序是无所谓的
- 在一维数组中,01背包问题遍历背包时必须倒序遍历。完全背包正序遍历
- 倒序遍历,必须先遍历物品,再遍历背包。正序遍历,则for循环嵌套顺序无所谓
Code
//先遍历物品,再遍历背包
private static void testCompletePack(){
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWeight = 4;
int[] dp = new int[bagWeight + 1];
for (int i = 0; i < weight.length; i++){ // 遍历物品
for (int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
for (int maxValue : dp){
System.out.println(maxValue + " ");
}
}
//先遍历背包,再遍历物品
private static void testCompletePackAnotherWay(){
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWeight = 4;
int[] dp = new int[bagWeight + 1];
for (int i = 1; i <= bagWeight; i++){ // 遍历背包容量
for (int j = 0; j < weight.length; j++){ // 遍历物品
if (i - weight[j] >= 0){
dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);
}
}
}
for (int maxValue : dp){
System.out.println(maxValue + " ");
}
}
12、零钱兑换 II
力扣题目链接
- 组合不强调元素之间的顺序,排列强调元素之间的顺序
思路:
动规五部曲
- 确定dp数组以及下标的含义
dp[j]:凑成总金额j的货币组合数为dp[j]
- 确定递推公式
dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。
所以递推公式:dp[j] += dp[j - coins[i]];
- dp数组初始化
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础,下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]
- 确定遍历顺序
求组合数,先遍历物品,再遍历背包
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
dp[j] += dp[j - coins[i]];
}
}
求排列数,先遍历背包,再遍历物品
for (int j = 0; j <= amount; j++) { // 遍历背包容量
for (int i = 0; i < coins.size(); i++) { // 遍历物品
if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
}
}
- 举例推导dp数组
-
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
-
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
Code
class Solution {
public int change(int amount, int[] coins) {
//递推表达式
int[] dp = new int[amount + 1];
//初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装
dp[0] = 1;
for (int i = 0; i < coins.length; i++) {
for (int j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
}
13、组合总和 Ⅳ
力扣题目链接
本题与零钱兑换差别就在于物品和背包的遍历顺序
动规五部曲
- 确定dp数组以及下标的含义
dp[i]: 凑成目标正整数为i的排列个数为dp[i]
- 确定递推公式
dp[i] += dp[i - nums[j]];
- dp数组如何初始化
dp[0] = 1
- 确定遍历顺序
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。
- 举例推导dp数组
Code
class Solution {
public int combinationSum4(int[] nums, int target) {
int[] dp = new int[target + 1];
dp[0] = 1;
for (int i = 0; i <= target; i++) {
for (int j = 0; j < nums.length; j++) {
if (i >= nums[j]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
}