总结STM32嵌入式面试知识点

news2024/12/23 17:54:01

一、STM32F1和F4的区别?

内核不同:F1是Cortex-M3内核,F4是Cortex-M4内核;主频不同:F1主频72MHz,F4主频168MHz;浮点运算:F1无浮点运算单位,F4有;功能性能:F4外设比F1丰富且功能更强大,比如GPIO翻转速率、上下拉电阻配置、ADC精度等;内存大小:F1内部SRAM最大64K,F4有192K(112+64+16)。

二、介绍一下STM32启动过程

通过Boot引脚设定,寻找初始地址初始化栈指针 __initial_sp指向复位程序 Reset_Hander设置异常中断 HardFault_Handler设置系统时钟 SystemInit调用C库函数 _main

三、介绍一下GPIO

GPIO 8种工作模式(gpio_init.GPIO_Mode):

(1) GPIO_Mode_AIN 模拟输入

(2) GPIO_Mode_IN_FLOATING 浮空输入

(3) GPIO_Mode_IPD 下拉输入

(4) GPIO_Mode_IPU 上拉输入

(5) GPIO_Mode_Out_OD 开漏输出

(6) GPIO_Mode_Out_PP 推挽输出

(7) GPIO_Mode_AF_OD 复用开漏输出

(8) GPIO_Mode_AF_PP 复用推挽输出APB2负责 AD,I/O,高级TIM,串口1。

APB1负责 DA,USB,SPI,I2C,CAN,串口2345,普通TIM,PWR

四、UART

  • 问题一:串行通信方式介绍

同步通信:I2C 半双工,SPI 全双工

异步通信:RS485 半双工、RS232 全双工

  • 问题二:串口配置

串口设置的一般步骤可以总结为如下几个步骤:

(1)串口时钟使能,GPIO时钟使能(2)串口复位(3)GPIO端口模式设置TX的GPIO工作模式为:GPIO_Mode_AF_PP;  //复用推挽输出RX的GPIO工作模式为:GPIO_Mode_IN_FLOATING; //浮空输入

(4)串口参数初始化主要包含:波特率设置(115200)、8个数据位、1个停止位、无奇偶校验位、无硬件数据流控制、收发模式。(5)开启中断并且初始化NVIC(如果需要开启中断才需要这个步骤)

(6)使能串口

(7)编写中断处理函数

  • 问题三:USART主要特点

(1)全双工操作(相互独立的接收数据和发送数据);

(2)同步操作时,可主机时钟同步,也可从机时钟同步;

(3)独立的高精度波特率发生器,不占用定时/计数器;

(4)支持5、6、7、8和9位数据位,1或2位停止位的串行数据桢结构;

(5)由硬件支持的奇偶校验位发生和检验;

(6)数据溢出检测;

(7)帧错误检测;

(8)包括错误起始位的检测噪声滤波器和数字低通滤波器

(9)三个完全独立的中断,TX发送完成、TX发送数据寄存器空、RX接收完成;

(10)支持多机通信模式;

(11)支持倍速异步通信模式。

应用场景:GPS、蓝牙、4G模块

五、I2C

问题一:I2C 总线在传送数据过程中共有三种类型信号

(1)开始信号:SCL 为高电平时,SDA 由高电平向低电平跳变,开始传送数据。

(2)结束信号:SCL 为高电平时,SDA 由低电平向高电平跳变,结束传送数据。

(3)应答信号:接收数据的 IC 在接收到 8bit 数据后,向发送数据的 IC 发出特定的低电平脉冲,表示已收到数据。CPU 向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU 接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。

问题二:I2C主机模式端口该怎么配置硬件模式:复用开漏输出、既不上拉也不下拉。

(快速模式:400 Kbit/s)软件模拟:推挽输出、配置上拉电阻。

问题三:I2C仲裁机制?I2C 仲裁机制,理解了 线“与”(Wired-AND),就一目了然了。简单说,它遵循“低电平优先”的原则,即谁先发送低电平谁就会掌握对总线的控制权。

硬件模式: 是由通信速率设置的

/* STM32 I2C 快速模式 */
#define I2C_Speed 400000

/* 通信速率 */
I2C_InitStructure.I2C_ClockSpeed = I2C_Speed;

软件模拟: 没有设置通信速率,该怎么计算呢?

通过I2C总线位延迟函数 i2c_Delay:

static void i2c_Delay(void)
{
  uint8_t i;

  /*
     下面的时间是通过安富莱AX-Pro逻辑分析仪测试得到的。
    CPU主频72MHz时,在内部Flash运行, MDK工程不优化
    循环次数为10时,SCL频率 = 205KHz
    循环次数为7时,SCL频率 = 347KHz, SCL高电平时间1.5us,SCL低电平时间2.87us
     循环次数为5时,SCL频率 = 421KHz, SCL高电平时间1.25us,SCL低电平时间2.375us

    IAR工程编译效率高,不能设置为7
  */
  for (i = 0; i < 10; i++);
}

应用场景:PMIC、加速度计、陀螺仪

六、SPI

  • 问题一:SPI需要几根线?

SPI 接口一般使用 4 条线通信:MISO 主设备数据输入,从设备数据输出。MOSI 主设备数据输出,从设备数据输入。SCLK 时钟信号,由主设备产生。CS 从设备片选信号,由主设备控制。

  • 问题二:SPI通信的四种模式?

SPI 有四种工作模式,各个工作模式的不同在于 SCLK 不同, 具体工作由 CPOL,CPHA 决定。

(1)CPOL: (Clock Polarity),时钟极性。SPI的CPOL,表示当SCLK空闲idle的时候,其电平的值是低电平0还是高电平1。

CPOL=0,时钟空闲idle时候的电平是低电平,所以当SCLK有效的时候,就是高电平,就是所谓的active-high;

CPOL=1,时钟空闲idle时候的电平是高电平,所以当SCLK有效的时候,就是低电平,就是所谓的active-low;

(2)CPHA:(Clock Phase),时钟相位。

相位,对应着数据采样是在第几个边沿(edge),是第一个边沿还是第二个边沿, 0对应着第一个边沿,1对应着第二个边沿。

CPHA=0,表示第一个边沿:

对于CPOL=0,idle时候的是低电平,第一个边沿就是从低变到高,所以是上升沿;

对于CPOL=1,idle时候的是高电平,第一个边沿就是从高变到低,所以是下降沿;

CPHA=1,表示第二个边沿:

对于CPOL=0,idle时候的是低电平,第二个边沿就是从高变到低,所以是下降沿;对于CPOL=1,idle时候的是高电平,第一个边沿就是从低变到高,所以是上升沿;

  • 问题三:该如何确定使用哪种模式?

(1)先确认从机需求的 SCLK 极性,不工作时是在低电位还是高电位,由此确认 CPOL 为 0 或 1。看原理图,我们设置串行同步时钟的空闲状态为高电平所以我们选择 SPI_CPOL_High。也就是CPOL为1。

(2)再由slave芯片 datasheet 中的时序图确认 slave 芯片是在 SCLK 的下降沿采集数据,还是在SCLK的上升沿。

翻译一下:W25Q32JV通过SPI兼容总线访问,包括四个信号:串行时钟(CLK),芯片选择(/CS),串行数据输入(DI)和串行数据输出(DO)。

标准SPI指令使用DI输入引脚串行地将指令、地址或数据写入CLK上升沿上的设备。DO输出引脚用于从CLK下降沿上的设备读取数据或状态。支持模式0(0,0)和3(1,1)的SPI总线操作。

模式0和模式3关注的是当SPI总线主端处于待机状态,数据没有被传输到串行Flash时CLK信号的正常状态。对于模式0,在下降和上升时,CLK信号通常是低的边缘/ CS。对于模式3,在/CS的下降和上升边缘上CLK信号通常是高的。

既然串行同步时钟的空闲状态为高电平,这里我们选择第二个跳变沿,所以选择 SPI_CPHA_2Edge。也就是CPHA为1。

即,我们选择的是模式3(1,1)。

应用场景:SPI Flash,W25Q32 存储器容量 32Mb (4M x 8),即4M byte

 资料直通车:Linux内核源码技术学习路线+视频教程内核源码

学习直通车:Linux内核源码内存调优文件系统进程管理设备驱动/网络协议栈

七、CAN

  • 问题一:CAN总结介绍一下 CAN控制器根据 CAN_L 和 CAN_H上 的电位差来判断总线电平。总线电平分为显性电平和隐性电平,二者比居其一。发送方通过使总线电平发生变化,将消息发送给接收方。问题二:CAN初始化配置步骤? (1)配置相关引脚的复用功能,使能CAN时钟 (2)设置CAN工作模式及波特率等(CAN初始化环回模式,波特率500Kbps ) (3)设置滤波器问题三:CAN发送数据格式

CanTxMsg TxMessage;TxMessage.StdId=0x12; //标准标识符
TxMessage.ExtId=0x12; // 设置扩展标示符
TxMessage.IDE=CAN_Id_Standard; // 标准帧
TxMessage.RTR=CAN_RTR_Data; // 数据帧
TxMessage.DLC=len; // 要发送的数据长度 发送8个字节
for(i=0;i<len;i++)
  TxMessage.Data[i]=msg[i]; //数据

八、DMA

  • 问题一:DMA介绍?

直接存储器存取(DMA) 用来提供在外设和存储器之间,或者存储器和存储器之间的高速数据传输。无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的资源来做其他操作。

  • 问题二:DMA传输模式有几种?

DMA_Mode_Circular 循环模式DMA_Mode_Normal 正常缓存模式

应用场景:GPS、蓝牙,都是用的循环采集,DMA_Mode_Circular模式。

一个比较重要的函数,获取当前剩余数据量大小,根据设置的接收buff大小减去当前剩余数据量 ,得到当前接收数据大小。

九、中断

  • 问题一:描述一下中断的处理流程? (1)初始化中断,设置触发方式是上升沿/下降沿/双沿触发。(2)触发中断,进入中断服务函数

  • 问题二:STM32的中断控制器支持多少个外部中断?

STM32的中断控制器支持 19 个外部中断/事件请求:

从图上来看,GPIO 的管脚 GPIOx.0~GPIOx.15(x=A,B,C,D,E,F,G)分别对应中断线 0 ~ 15。

另外四个EXTI线的连接方式如下:● EXTI线16连接到PVD输出● EXTI线17连接到RTC闹钟事件● EXTI线18连接到USB唤醒事件● EXTI线19连接到以太网唤醒事件(只适用于互联型产品)中断服务函数列表:IO口外部中断在中断向量表中只分配了7个中断向量,也就是只能使用7个中断服务函数。EXTI0_IRQHandlerEXTI1_IRQHandlerEXTI2_IRQHandlerEXTI3_IRQHandlerEXTI4_IRQHandlerEXTI9_5_IRQHandler

EXTI15_10_IRQHandler

十、STM32有几个时钟源

STM32 有5个时钟源:HSI、HSE、LSI、LSE、PLL。

①、HSI是高速内部时钟,RC振荡器,频率为8MHz,精度不高。

②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

③、LSI是低速内部时钟,RC振荡器,频率为40kHz,提供低功耗时钟。

④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

十一、RTOS的任务是怎么写的?如何切出这个任务?

解答:

一个任务,也称作一个线程。UCOS有一个任务调度机制,根据任务的优先级进行调度。一个是硬件中断, 那么系统会将当前任务有关变量入栈,然后执行中断服务程序,执行完成后出栈返回.另一个是任务之间的切换,使用的方法就是任务调度,每一个任务有自己的栈,调度也是一样的入栈,然后执行另一个程序,然后出栈返回。

并非是每一任务按优先级顺序轮流执行的,而是高优先级的任务独占运行,除非其主动放弃执行,否则低优先级任务不能抢占,同时高优先级可以把放出去给低优先级任务使用的CPU占用权抢回来。所以ucos的任务间要注意插入等待延时,以便ucos切出去让低优先级任务执行。

十二、UCOSII中任务间的通信方式有哪几种?

解答:

在UCOSII中,是使用信号量、邮箱(消息邮箱)和消息队列这些被称作事件的中间环节来实现任务间的通信的,还有全局变量。信号量用于:1.控制共享资源的使用权(满足互斥条件)

2.标志某时间的发生

3.使2个任务的行为同步

应用实例:互斥信号量

作为互斥条件,信号量初始化为 1。

实现目标:调用串口发送命令,必须等待返回“OK”字符过后,才能发送下一条命令。每个任务都有可能使用到此发送函数,不能出现冲突!

消息队列:

概念:

(1)消息队列实际上就是邮箱阵列

(2)任务和中断都可以将一则消息放入队列中,任务可以从消息队列中获取消息。

(3)先进入队列的消息先传给任务(FIFO)。

(4)每个消息队列有一张等待消息任务的等待列表,如果消息列中没有消息,则等待消息的任务就被挂起,直到消息到来。

应用场景:串口接收程序中的接收缓冲区。

储存外部事件。

十三、项目使用了自定义协议,是什么结构?

解答:

结构为:帧头(SDTC)+帧长度+指令+流水号+数据+CRC校验。

十四、uCOSII和Linux的差异?

解答:

μC/OS-II是专门为计算机的嵌入式应用设计的,μC/OS-II 具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点, 最小内核可编译至 2KB 。μC/OS-II 已经移植到了几乎所有知名的CPU 上。

linux 免费,安全,稳定,应用范围广,在嵌入式上,服务器上,家用机,都有广泛应用。

μC/OS-II Linux 都适合用在嵌入式上。但μC/OS-II 是专为嵌入式而设计,这样的结果是,运行效率更高,占用资源更少。

linux 都可以用作服务器上,使用率高。linux 虽然不是专门针对服务器而开发,但其源码公开,完全可以修改,使得两者差异不大,最主要的发行版 redhat linux 就是在服务器上用得很多的系统。

十五、Git提交代码

问题:Git提交代码过程?

解答:

1、显示工作路径下已修改的文件:

$ git status

2、进入修改文件目录:

$cd -

3、显示与上次提交版本文件的不同:

$ git diff

4、把当前所有修改添加到下次提交中:

$ git add .

5、添加相关功能说明,(第一次提交使用这个)

$ git commit -s

其中还要注明:

Fuction: 修改代码的功能Ticket: 对应Bug号

注意:每一个文件夹下都要重新提一次。

6、查看提交代码

$ tig .

7、请勿修改已发布的提交记录! (以后提交使用这个)

$git commit --amend

命令模式下:

:x ( 写入文件并退出)

8、推送到服务器

$ git push origin HEAD:refs/for/master

十六、ucosii和ucosiii和freeRTOS比较

  • 问题一:三者比较?

解答:

ucosii 和 freeRTOS比较:

(1)freeRTOS只支持TCP/IP, uCOSii则有大量外延支持,比如FS, USB, GUI, CAN等的支持。(我们用于tbox要用到CAN,所以选择uCOSii)(2)freeRTOS 是在商业上免费应用。uCOSii在商业上的应用是要付钱的。(3)任务间通讯freeRTOS只支持队列, 信号量, 互斥量。uCOSii除这些外,还支持事件标志组,邮箱。

(4)理论上讲,freeRTOS 可以管理超过64个任务,而uCOSii只能管理64个。

ucosii 和 ucosiii 比较:

那么从μC/OS-II到μC/OS-III有哪些不同的地方呢?增加了什么,我们看改动还是很大的。

一个是原来只有0~63个优先级,而且优先级不能重复,现在允许几个任务使用同一个优先级,在同一个优先级里面,支持时间片调度法;

第二个是允许用户在程序运行中动态配置实时操作系统内核资源,比如,任务、任务栈、信号量、事件标志组、消息队列、消息数、互斥型信号量、存储块划分和定时器,可以在程序运行中变更。这样,用户可以避免在程序编译过程中出现资源不够分配的问题。

在资源复用上,也做了一些改进。μC/OS-II中,最多任务数有64个,到了版本2.82以后是256个,μC/OS-III中,用户可以由任意多的任务、任意多的信号量、互斥型信号量、事件标志、消息列表、定时器和任意分配的存储块容量,仅受限于用户CPU可以使用的RAM量。这个也是一个很大的扩展。

(问:邵老师,它的这个数是启动时就固定的,还是启动后随便定?)它是配置的时候可以自由定义的,只有你的RAM足够大的话。

第四点是增加了很多功能,功能总是越来越多的,大伙可以看一下的。原来这些功能在μC/OS-II里面是没有的。

十七、低功耗模式

  • 问题一:低功耗模式有几种?唤醒方式是什么?

解答:

十八、物联网的架构

  • 问题一:物联网的架构分为几层? 每一层都负责哪些功能?

解答:

分三层,物联网从架构上面可以分为感知层、网络层和应用层

(1)感知层: 负责信息采集和物物之间的信息传输,信息采集的技术包括传感器、条码和二维码、 RFID射频技术、音视频等多媒体信息。

信息传输包括远近距离数据传输技术、自组织组网技术、协同信息处理技术、信息采集中间件技术等传感器网络。

感知层是实现物联网全面感知的核心能力,是物联网中包括关键技术、标准化方面、产业化方面亟待突破的部分,关键在于具备更精确、更全面的感知能力,并解决低功耗、小型化和低成本的问题。

(2)网络层: 是利用无线和有线网络对采集的数据进行编码、认证和传输,广泛覆盖的移动通信网络是实现物联网的基础设施,是物联网三层中标准化程度昀高、产业化能力昀强、昀成熟的部分,关键在于为物联网应用特征进行优化和改进,形成协同感知的网络。

(3)应用层: 提供丰富的基于物联网的应用,是物联网发展的根本目标,将物联网技术与行业信息化需求相结合,实现广泛智能化应用的解决方案集,关键在于行业融合、信息资源的开发利用、低成本高质量的解决方案、信息安全的保障以及有效的商业模式的开发。

十九、内存管理

  • 问题一:UCOS中内存管理的方法有哪些?

解答:

系统通过与内存分区相关联的内存控制块来对内存分区进行管理。

动态内存管理函数有:

创建动态内存分区函数OSMemCreate();请求获得内存块函数OSMemGet();

释放内存块函数OSMemPut();

二十、Ucos中任务状态哪几种?任务状态之间的关系图?

解答:

有5种状态:

睡眠状态、就绪状态、运行状态、等待状态(等待某一事件发生)和中断服务状态。

UCOSII 任务的5个状态转换关系:

二十一、ADC

简述STM32的ADC系统的功能特性(1)12bit分辨率(2)自动校准(3)可编程数据对齐(转换结果支持左对齐或右对齐方式存储在16位数据寄存器)(4)单次和连续转换模式

二十二、系统时钟

  • 简述设置系统时钟的基本流程

(1)打开HSE,等待就绪后,设置Flash等待操作。(2)设置AHB,APB1,APB2分频系数,确定他们各自和系统时钟的关系。(3)设置CFGR寄存器确定PLL的时钟来源和倍频系数(HSE外部8M*9倍=72MHz)。

(4)使能PLL,将系统时钟源切换到PLL。

二十三、HardFault_Handler处理

  • 问题一:造成原因

(1)数组越界操作;(2)内存溢出,访问越界;(3)堆栈溢出,程序跑飞;(4)中断处理错误;

  • 问题二:处理方式

(1)在startup_stm32f10x_cl.s里找到 HardFault_Handler 的地址重映射,并重新编写,让其跳转到 HardFaultHandle 函数。

(2)打印查看R0、R1、R2、R3、R12、LR、PC、PSR寄存器。

(3) 查看Fault状态寄存器组(SCB->CFSR和SCB->HFSR)

二十四、TTS语音合成方法

  • 问题一:sim7600 TTS语音使用什么方法

解答:

(1)使用unicode编码合成声音

AT+CTTS=1,” 6B228FCE4F7F75288BED97F3540862107CFB7EDF”

内容是“欢迎使用语音合成系统”,模块收发中文短信就是unicode编码,所以很容易将短信朗读出来;

(2)直接输入文本,普通字符采用ASIIC码,汉字采用GBK编码。

AT+CTTS=2,”欢迎使用语音合成系统”

二十五、定时器

  • 已知STM32的系统时钟为 72MHz,如何设置相关寄存器,实现20ms定时?

解答:

通过SysTick_Config(SystemCoreClock / OS_TICKS_PER_SEC))//1ms定时器

其中:

uint32_t SystemCoreClock  = SYSCLK_FREQ_72MHz;        /*!< System Clock Frequency (Core Clock) */ #define SYSCLK_FREQ_72MHz  72000000 #define OS_TICKS_PER_SEC       1000    /* Set the number of ticks in one second

如果需要20ms则,可以通一设置一个全局变量,然后定初值得为20,这样,每个systick中断一次,这个全局变量减1,减到0,即systick中断20次,时间为:1ms*20=20ms。从而实现 20ms 的定时。

二十六、状态机

  • 问题:使用的什么状态机?

解答:

(英语:Finite-state machine, FSM),又称有限状态自动机,简称状态机。

假设状态机的状态转换由下表所示:

实现:(使用switch语句)

//横着写
void event0func(void)
{
    switch(cur_state)
    {
        case State0:
             action0;
             cur_state = State1;
            break;
         case State1:
             action1;
             cur_state = State2;
            break;
         case State2:
             action1;
             cur_state = State0;
            break;
        default:break;
    }
}

void event1func(void)
{
    switch(cur_state)
    {
        case State0:
             action4;
             cur_state = State1;
             break;
        default:break;
    }
}

void event2func(void)
{
    switch(cur_state)
    {
        case State0:
             action5;
             cur_state = State2;
            break;
         case State1:
             action6;
             cur_state = State0;
            break;
        default:break;
    }
}

二十七、器件选型

STM32F407 VS STM32F103 主要功能及资源对比?

解答:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/716877.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android Studio实现内容丰富的安卓汽车租赁平台

如需源码可以添加q-------3290510686&#xff0c;也有演示视频演示具体功能&#xff0c;源码不免费&#xff0c;尊重创作&#xff0c;尊重劳动。 项目编号101 1.开发环境 android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端&#xff1a; 1.注册登录 2.查看公告 3.查…

css重点学习

一、选择器 1.标签名选择器 div{border: 5px blue dotted;color: aquamarine;font-size: 20px;} <body><div id"div001">div标签1</div><div id"002">div标签2</div> </body> //只写出了重点部分 2.id选择器 #div0…

IMS:Activity和View处理InputEvent

IMS:Activity和View处理InputEvent 1、IMS服务处理2、Activity的DecorView界面添加3、Activity和View处理InputEvent3.1 InputEventReceiver接收InputEvent3.2 处理KeyEvent3.3 处理MotionEvent android12-release 1、IMS服务处理 关键流程EventHub -> InputReader -> In…

【BUUCTF-REVERSE刮开有奖】详解版

这道题是BUUCTF-REVERSE中的一道题目 拿到题目我们直接拖到Exeinfo_PE中查看&#xff0c;发现没有加壳&#xff0c;32位应用程序&#xff0c;打开应用程序看看&#xff1a; 打开是这样&#xff0c;我是没有找到编辑框&#xff0c;那直接拖到IDA中打开看看吧&#xff1a; 打开I…

使用python-opcua 实现modbus网关(2)

我们继续来研究如何使用python-opcua 实现opcua/modbus 网关。 opcua 开发包包含了大量的函数&#xff0c;通过研究opcua/modbus 网关的实现&#xff0c;可以了解这些函数的使用方法。由于函数过多&#xff0c;文章中函数的使用方式可能不尽合理&#xff0c;或者存在错误。希望…

从不同视角绘制三维散点图

import numpy as np from matplotlib import pyplot as plt positive_data arr_feature_pca[y_dbscan_pred ! -1, :] negative_data arr_feature_pca[y_dbscan_pred -1, :] # --------------------------------------- 定义绘图函数 ----------------------------------- d…

华为云函数工作流FunctionGraph新手操作指南

函数工作流&#xff08;FunctionGraph&#xff09;是华为云提供的一款无服务器&#xff08;Serverless&#xff09;计算服务&#xff0c;无服务器计算是一种托管服务&#xff0c;服务提供商会实时为你分配充足的资源&#xff0c;而不需要预留专用的服务器或容量&#xff0c;真正…

CRM的哪些功能对企业最有用?

企业如何在竞争激烈的市场环境中&#xff0c;提高销售效率&#xff0c;管理客户关系&#xff0c;实现业绩增长&#xff1f;适合的CRM客户管理系统就可以帮助很多。Zoho CRM是一款SaaS云端CRM系统&#xff0c;它能够帮助企业管理客户关系&#xff0c;提高销售效率&#xff0c;获…

springboot集成camunda

1、相关软件下载Camunda流程引擎快速入门——Hello World示例 2、由于camunda-modeler最新版本为5.12.0.界面不太一样。 可以安装历史版本4.12.0camunda-bpm camunda-modeler等历史版本下载 3、汉化Camunda Modeler汉化添加简体中文和繁体中文支持 4、集成如何实现Springbootca…

Android Studio实现内容丰富的安卓高校评教系统

如需源码可以添加q-------3290510686&#xff0c;也有演示视频演示具体功能&#xff0c;源码不免费&#xff0c;尊重创作&#xff0c;尊重劳动。 项目编号114 1.开发环境 android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端&#xff1a; 1.注册登录 2.查看公告 3.查…

口语理解任务源码详解系列(一)数据集构建

口语理解任务源码详解系列&#xff08;一&#xff09;数据集构建 写在前面 本系列从零开始构建口语理解项目&#xff0c;整个项目分为意图分类与槽位填充两个子任务。项目采用的数据集为ATIS航空领域口语理解数据集&#xff0c;项目源码请传送到&#xff1a;github 一、处理数据…

网络编程1—— IP地址 + 端口号 +TCP/IP协议 + 协议分层的封装与应用

文章目录 前言一、网络发展各阶段二、网络通信的三大要素1.IP地址2.端口号3.网络协议 三、TCP/IP五层网络模型各层级的用处网络设备所在分层 四、封装和分用封装分用网络传输的实际情况 总结 前言 本人是一个刚刚上路的IT新兵,菜鸟!分享一点自己的见解,如果有错误的地方欢迎各…

搞懂推荐系统中的评价指标NDCG(CG、DCG、IDCG)

这些指标都是衡量搜索引擎算法的指标。搜索引擎一般采用PI&#xff08;peritem&#xff09;的方式进行评测&#xff0c;简单地说就是逐条对搜索结果进行分等级的打分。假设我们现在在Google上搜索一个词&#xff0c;然后得到5个结果。我们对这些结果进行3个等级的区分&#xff…

cmd可以用node但是vscode报错--node : 无法将“node”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。

原因&#xff1a;环境变量配置错误 解决&#xff1a; a.如果不想配置环境变量&#xff0c;可用管理员方式运行vscode后&#xff0c;重启编译器&#xff1a; 若以上方法不行&#xff0c;需要老老实实配置环境变量&#xff1a; b.配置 系统环境变量&#xff08;S&#xff09; 即…

机器学习20:嵌入-Embeddings

嵌入&#xff08;Embeddings&#xff09;是一个相对低维的空间&#xff0c;我们可以将高维向量转换到其中。嵌入使得对大型输入&#xff08;例如表示单词的稀疏向量&#xff09;进行机器学习变得更加容易。理想情况下&#xff0c;嵌入通过将语义相似的输入紧密地放置在嵌入空间…

高中生用台灯哪种好?盘点好用的高中生护眼台灯

随着科技的进步&#xff0c;台灯的外观和造型都开始不断的变化&#xff0c;而且台灯的功能也越来越多元化&#xff0c;各式各样的台灯都有。论哪种台灯最适合高中生使用&#xff0c;我的回答是护眼台灯&#xff01;因为台灯的主要作用就是照明&#xff0c;便于学习、阅读、工作…

基于Springboot+Vue的手机商城(源代码+数据库)081

基于SpringbootVue的手机商城(源代码数据库)081 一、系统介绍 本项目前后端分离&#xff08;该项目还有ssmvue版本&#xff09; 本系统分为管理员、用户两种角色 用户角色包含以下功能&#xff1a; 登录、注册、商品搜索、收藏、购物车、订单提交、评论、退款、收货地址管…

2023年5月 少儿编程 中国电子学会图形化编程等级考试Scratch编程一级真题解析(选择题)

2023年5月scratch编程等级考试一级真题 选择题(共25题,每题2分,共50分) 1、看图找规律,请问下图红框中是 A、 B、 C、 D、 答案:D 考点分析:

DS-font

paper:https://arxiv.org/pdf/2301.10008.pdf title: Few-shot Font Generation by Learning Style Difference and Similarity accepted: arXiv 2023 abstract 少镜头字体生成(FFG)旨在保留原始字符的底层全局结构,同时通过参考一些样本生成目标字体。它已应用于字体库创…

怎么解决找不到msvcp120.dll,msvcp120.dll一键修复方法

小伙伴们知道msvcp120.dll是什么文件吗?那么今天小编就来讲解电脑出现msvcp120.dll丢失的解决方法介绍&#xff0c;希望能够帮助到大家呢。 msvcp120.dll 是windows系统中必备的动态链接库文件。msvcp120.dll可以解决某些大型游戏、程序由于vs2010编译系统中缺失此dll的问题。…