我的大模型观:我眼中的LLM和AIGC

news2024/11/24 13:07:20

今年,大模型火的一塌糊涂。最近几个月paper with code上,前几名的论文几乎都是生成模型和LLM。参加AI相关的会议,也是千篇一律的LLM。国内的大厂争先恐后的发布自己的大模型,比如百度的文心、360的智脑、讯飞的星火等等,呈现出百花齐放百家争鸣的繁荣现象。。北京市推出了首批的大模型应用案例,从政府层面得到了对大模型的肯定。
在这里插入图片描述

结合最近论文和实践,我对大模型有了一些自己的看法:

大模型是有智能的。

虽然不愿意承认这点,但是大模型的表现确确实实的展现出了智能。比如chat paper这样的应用,利用大模型读paper,提取paper的关键内容;医疗大模型 ——HuatuoGPT(华佗GPT)使语言模型具备像医生一样的诊断能力和提供有用信息的能力;ChatLaw作为法律大模型在2000道司法考试上得到了1733的分数等等。这些现象足以证明大模型能够理解人类的表达意图,是有智能的。甚至,有人已经发出了硅基生命将会统治碳基生命的言论,早早做起了投降派。

其实,3年前的CLIP给人留下了深刻的印象,通过对4亿的文本——图像对进行训练出来的多模态模型,零样本迁移在ImgetNet数据集上超越了ResNet50,同时在物体检测也有着不俗的表现。CLIP打破了计算机视觉的原有范式,真正做了对文本和图像的理解 论文翻译详见:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/125452516。

CLIP的成功证明提高模型的参数规模和数据规模,可以产生意想不到的智能。

也许,大模型是一场骗局?

数据集一般分为训练集、验证集和测试集,这三个数据集是不重复的。训练ChatGPT的数据集有几个PB,几乎是人类已知数据的总和,很难保证数据集不重复。而且我们对ChatGPT的提问也几乎包含在这些数据集里。ChatGPT更像一个经过压缩的数据库,我们的提问就变成了查询和检索,只不过这样的检索效率很高,大大超越了现有的搜索引擎。

如果是这样,大语言模型的智能是非常有限的,也需没有智能。我们用小模型能不能做到呢?比如1B或者更小的模型。

今年高考题放出来后,FlagEval 大模型评测团队从 2023年高考考卷中整理了 147 道客观题(其中语文 20道,英语 44道,历史 31道,数学 9道,物理 8道,政治 21道,生物 14道)形成 Gaokao2023 V1.0 评测集。经过测试,GPT-4 和 GPT-3.5-turbo 正确率分别为 60.4%、42.5%。750×60%=450分。陆奇博士说ChatGPT的能力达到了斯坦福大学本科生的水平。貌似高考450分很难上斯坦福吧!面对新问题,ChatGPT的表现并不理想。

当然,ChatGPT在很多其他领域的表现也不尽人意,出现了幻想!

大语言模型的能力来源于数据还是模型?这需要去验证,也需不需要1750亿这样的大模型就能达到现有ChatGPT能力。这个问题只能有OpenAI去回答。

从头训练or微调

对于有卡的人或者公司来说,这不是个问题。但是对于很多小点的公司和个人不得不考虑二者的成本和收益比。微调,特别是量化微调可以大大减少训练成本,我们在基座模型上使用消费级的显卡就可以完成。QLORA足以在单个48GB GPU上微调65B参数模型,同时保留完整的16位微调任务性能。邱锡鹏团队实现了在8×RTX 3090的机器上对65B模型进行全参数微调。这些方法大大降低了大模型的训练门槛。

组织专业的数据在已有的模型上微调,,可以提升大模型在专有领域的能力,但是带来的后果是模型其他能力的退化,比如多轮对话能力在微调之后有可能丧失了,出现了灾难性的遗忘!

上周和众多的专家交流后,我得到了答案。在组织数据的时候,可以将专有领域的数据和训练基座模型的原有数据融合去训练,有能力做全参数训练的,可以做全参数微调,如果没有的可做一些量化微调。不过训练成本会变的很大,还是不适合个人玩家。

我想象中的大模型架构

一个通用的大语言模型很难满足人们的需求,随着专有领域蓬勃发展,专有领域小模型在各自的领域吊打ChatGPT.。所以,我对大模型的架构思考了良久!我认为大模型的整体架构应该是个模型集。如下图:

通用的大模型承担中心处理的角色,它有很强的语言交互能力和多轮对话的能力。在实际生活中,人们很难一句话描述出自己的需求,往往需要多轮的沟通,等待双方的认知对齐后才能得出正确的需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/715379.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

代码随想录算法训练营第三天 | 链表基础系列1-- 链表理论基础-移除链表元素-设计链表-反转链表(203、707、206)

链表基础系列1 链表基础移除链表元素203 移除链表元素代码随想录的代码 707 设计链表我的代码(错误太多,一致debug,没有用虚拟头,不想写了,是未通过的代码)代码随想录的代码小记:双链表好复杂,要仔细看。 2…

【狂神】MySQL - Delete 和 Truncate 的区别

1. DELETE 命令 语法 : delete from 表名 [where 条件] -- 删除数据 (避免这样写, 会全部删除) DELETE FROM student;-- 删除指定数据 DELETE FROM student WHERE id 1; 2. TRUNCATE 命令 作用 : 完全清空一个数据库表, 表的结构和索引约束不会变. -- 清空 stu…

【Linux】LVS+Keepalived高可用负载均衡群集

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 LVSKeepalived高可用负载均衡群集 一、Keepalived实现原理1.Keepalived案例分析2.Keepalived工具介绍3,Keepalived实现原理剖析4.Keepalived案例讲解5.Keepalived…

自媒体新手如何从零开始做自媒体?有哪些步骤流程?

自媒体已经成为了一种非常流行的个人创业方式,相比于传统的创业方式,自媒体的投入成本较低,且门槛较低。许多人都有一个梦想,希望成为一个自媒体人,成为自己的老板。但是,对于很多自媒体小白来说&#xff0…

基于Springboot+mybatis+mysql+vue实现企业注册模块功能

基于Springbootmybatismysqlvue实现企业注册模块功能 一、系统介绍二、功能展示1.主页面2.注册成功 三、数据库四、代码展示四、其他系统实现五、获取源码 一、系统介绍 该系统实现简单的企业信息注册,保存后,提示注册成功。 运行环境:idea…

IP 协议(网络层协议)

IP协议 IP 协议作用地址管理动态分配 IP 地址NAT 机制IPv6IP 地址的组成 路由选择 IP 协议作用 主要有两点 : 地址管理 为每个上网的设备分配一个唯一地址. 路由选择 两台主机间的信息交互, 具体走哪条线路. 地址管理 先来看看 IP协议 报文格式 : IP 协议最主要就是 32 位的…

2.9寸NFC卡片

应用广泛 无需电池 可挂、可横向/纵向摆放,适合多种场所 使用2.9寸电子纸墨水屏,持续显示不耗电 本产品无电池,节能环保,助力实现碳中和 ​ 基于电子纸墨水屏作为显示屏,符合当下节能环保、护眼的需求。质地轻薄、大…

Flameshot (火焰截图)截图无法插入汉字

前不久,Debian11升级至Debian12后,发现fcitx5无法用了,好似包也被删除了。于是重新安装了fcitx5,但发现了一个问题,利用Flameshot(火焰截图)截取图片时,无法对图片进行文字注释。如下图所示&…

HTML常用标签

1、HTML HTML Hyper Text Markup Language 超文本标记语言 Markup Language 标记语言 XML Extensible Markup Language 可扩展标记语言 HTML2HTML3HTML4XHTML1XHTML2HTML5 2 、HTML基本结构 3 、网页 header header 文档的开始部分 网页加载时,首先加载header…

Spring Cloud Config: 了解、原理和使用

Spring Cloud Config: 了解、原理和使用 Spring Cloud Config 是 Spring Cloud 生态系统中的一个重要组件,它提供了一种分布式配置管理的解决方案,能够集中管理应用程序的配置,支持多种后端存储,如 Git、SVN、本地文件系统、Vaul…

ADG环境下统计每天的归档

现场项目经理反馈,使用日常的归档查询sql看到每天的归档量都快2T了,截图出来确实 很大 查看每天的归档文件总量比当天的归档量少了一半左右,百度了很多案例,最后发现问题该环境是ADG一主一备,每天的归档量也传输到备库…

JavaScript(JS)的引入方法

内部脚本 JS代码必须位于<script></script>标签之间在HTML文档中&#xff0c;可以在任意地方&#xff0c;放置任意数量的<script>一般会把脚本置于<body>元素的底部&#xff0c;可以改善显示速度 外部脚本&#xff1a;将JS代码定义在外部JS文件中&…

0基础学习VR全景平台篇 第55篇:专业版功能-数据统计

使用蛙色VR平台数据统计功能&#xff0c;可以统计分析整个账号下【所有作品】的访问数据&#xff1b; 亦可分析单个作品中【每个场景】的访问数据。 账号数据统计功能位置 单作品数据统计功能位置 一、本功能将用在哪里&#xff1f; 数据统计功能&#xff0c;可实现对作品总访…

自发二元行为预测人际神经同步(INS)的出现

导读 人际神经同步(INS)正在成为预测多人协调、沟通和合作成功等社会互动的有力标志。由于对INS的起源知之甚少&#xff0c;本研究测试了INS是否以及如何从自发的二元行为中产生。要求一对参与者在不说话或做出共同语言手势的情况下互相看着对方&#xff0c;并记录他们的神经活…

网络分层模型以及通信流程

2.1OSI模型和tcp/ip模型 Tcp/ip模型早于ISO的OSI模型 2.2网络为什么要分层&#xff1f; 将一个大的问题进行拆分&#xff0c;分而治之&#xff0c;专门的层处理专门的事情。而且那层出现问题只需对该层进行处理&#xff0c;不会影响到其他层。就相当于做菜的过程&#xff0c;…

满足数字化转型对无线网络性能需求,锐捷全场景 Wi-Fi 7 方案

数字化转型深入了各行业&#xff0c;对于算力、数据、网络的需求也水涨船高。其中&#xff0c;无线网络对于生产办公等等场景数据传输的保障&#xff0c;愈加重要。 例如生产场景里&#xff0c;工厂增设各类自动化、智能化的传感器&#xff0c;都需要以无线&#xff08;甚至全部…

我的《CSDN铁粉宝典》

完成一篇如何获得铁粉&#xff0c;或者相关的文章且质量分达到80分以上即可 一 什么是铁粉&#xff1f; 顾名思义&#xff0c;就是你的铁杆粉丝&#xff0c;但是这个只是过通俗的解释&#xff0c;那么在CSDN规则中&#xff0c;什么是铁粉呢&#xff1f;官方给了一系列解释 “为…

新发布的 DBeaver 23.1.1 版本正式支持时序数据库 TDengine

众所周知&#xff0c;DBeaver 是一个流行的开源数据库管理和 SQL 客户端工具&#xff0c;为管理和使用各种类型的数据库&#xff08;包括多个时序数据库&#xff09;提供强大而灵活的平台。为了让大家在应用上更加便捷&#xff0c;我们与 DBeaver 达成合作&#xff0c;新发布的…

蓝桥杯专题-试题版含答案-【字母统计】【计算球体积】【16进制的简单运算】【C小加随机数】

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 &#x1f449;关于作者 专注于Android/Unity和各种游…

子元素比父元素 z-index高低的问题

一.大坑---设置父relative z-index:0 .parent {position: relative;z-index:0; } .child {position: absolute;z-index:9999; }子元素居然比父元素的兄弟元素低一个层级&#xff01; 原因&#xff1a; 当你将父元素的 position 属性设置为 relative 并且 z-index 属性设置为…