部署 CNI网络组件

news2024/11/16 13:39:31

部署 flannel

K8S 中 Pod 网络通信:
●Pod 内容器与容器之间的通信
在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,
相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信
每个 Pod 都有一个真实的全局 IP 地址,
同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,
Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信
Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,
且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。
因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,
通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。
Overlay Network:
叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,
该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

VXLAN:
将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,
然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel:
Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,
目前支持 udp、vxlan、 host-GW 3种数据转发方式。
#Flannel udp 模式的工作原理:
数据从 node01 上 Pod 的源容器中发出后,
经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,
flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。
Flannel 通过 Etcd 服务维护了一张节点间的路由表。
源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,
数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,
之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。
#ETCD 之 Flannel 提供说明:
存储管理Flannel可分配的IP地址段资源
监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 udp 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 vxlan 模式差。
#vxlan 模式:
vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:
(1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,
再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好
(2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,
属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp
(3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,
arp广播等二层知识,udp模式主要关注路由

#Flannel vxlan 模式的工作原理:
vxlan在内核当中实现,当数据包使用vxlan设备发送数据时,
会打上vlxan的头部信息,在发送出去,对端解包,flannel.1网卡把原始报文发送到目的服务器。

部署vxlan

//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v1.3.0.tgz  和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar

mkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v1.3.0.tgz 

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-hjtc7   1/1     Running   0          7s

kubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.80.11   Ready    <none>   81m   v1.20.11

 

部署 Calico

#k8s 组网方案对比:
●flannel方案
需要在每个节点上把发向容器的数据包进行封装后,
再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。
目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。
数据通信性能则大受影响。

●calico方案
Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,
使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发来。

#Calico 主要由三个部分组成:
Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
BIRD:负责分发路由规则,类似路由器。
Confd:配置管理组件。
#Calico 工作原理:
Calico 是通过路由表来维护每个 pod 的通信。
Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 
然后把另一端接入到宿主机网络空间,
由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则,
用于接收传入的IP包。
有了这样的 veth pair 设备以后,容器发出的IP包就会通过 veth pair 设备到达宿主机,
然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。
这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。
calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,
彼此之间通过 BGP 交换路由,这些节点我们叫做 BGP Peer。

目前比较常用的时flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,
calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,
所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,
配置更多网络策略,则使用calico更好。

在 master01 节点上操作 

#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义Pod网络(CALICO_IPV4POOL_CIDR),与前面kube-controller-manager配置文件指定的cluster-cidr网段一样
    - name: CALICO_IPV4POOL_CIDR
      value: "192.168.0.0/16"
  
kubectl apply -f calico.yaml

kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s

#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes

 node02 节点部署

//在 node01 节点上操作
cd /opt/
scp kubelet.sh proxy.sh root@192.168.146.40:/opt/
scp -r /opt/cni root@192.168.146.40:/opt/

//在 node02 节点上操作
#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.146.40

//在 master01 节点上操作
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#通过 CSR 请求
kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.146.40

#查看群集中的节点状态
kubectl get nodes

 部署 CoreDNS

//在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

master02 节点部署 

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.80.20:/opt/
scp -r /opt/kubernetes/ root@192.168.80.20:/opt
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.80.20:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.80.10:2379,https://192.168.80.11:2379,https://192.168.80.12:2379 \
--bind-address=192.168.80.20 \				#修改
--secure-port=6443 \
--advertise-address=192.168.80.20 \			#修改
......

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

负载均衡部署

//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
##### 在lb01、lb02节点上操作 ##### 
//配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    
	access_log  /var/log/nginx/k8s-access.log  main;

    upstream k8s-apiserver {
        server 192.168.80.10:6443;
        server 192.168.80.20:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

http {
......


//检查配置文件语法
nginx -t   

//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 


//部署keepalived服务
yum install keepalived -y

//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUP
    interface ens33			#指定网卡名称 ens33
    virtual_router_id 51	#指定vrid,两个节点要一致
    priority 100			#lb01节点的为 100,lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.80.100/24	#指定 VIP
    }
    track_script {
        check_nginx			#指定vrrp_script配置的脚本
    }
}


//创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")

if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi


chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.80.100:6443
                      
vim kubelet.kubeconfig
server: https://192.168.80.100:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.80.100:6443

//重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      44904/nginx: master 
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      44904/nginx: master 
tcp        0      0 192.168.80.100:6443     192.168.80.12:46954     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:45074     192.168.80.10:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:53308     192.168.80.20:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:53316     192.168.80.20:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.11:48784     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:45070     192.168.80.10:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.11:48794     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.12:46968     ESTABLISHED 44905/nginx: worker 


##### 在 master01 节点上操作 ##### 
//测试创建pod
kubectl run nginx --image=nginx

//查看Pod的状态信息
kubectl get pods
NAME                    READY   STATUS              RESTARTS   AGE
nginx-dbddb74b8-nf9sk   0/1     ContainerCreating   0          33s   #正在创建中

kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
nginx-dbddb74b8-nf9sk   1/1     Running   0          80s  			#创建完成,运行中

kubectl get pods -o wide
NAME                    READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE
nginx-dbddb74b8-26r9l   1/1     Running   0          10m   172.17.36.2   192.168.80.15   <none>
//READY为1/1,表示这个Pod中有1个容器

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 172.17.36.2

//这时在master01节点上查看nginx日志,发现没有权限查看
kubectl logs nginx-dbddb74b8-nf9sk

部署 Dashboard

Dashboard 介绍
仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如部署,作业,守护进程等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

//在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001     #添加
  type: NodePort          #添加
  selector:
    k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard
https://NodeIP:30001

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/711967.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何看待程序员的高薪现象?

点击上方关注 “终端研发部” 设为“星标”&#xff0c;和你一起掌握更多数据库知识 最近在知乎上看到这样个话题&#xff1a; 难道不应该吗&#xff1f; 本人月薪八千&#xff0c;在北京一线&#xff0c;拿着最基础的工资&#xff0c;上的加班最频繁的班&#xff0c;干最累的活…

STM32模拟SPI协议控制数字电位器MCP41010电阻值

STM32模拟SPI协议控制数字电位器MCP41010电阻值 MCP41010是单路8位分辨率数字电位器&#xff0c;通过SPI接口可控制电位器阻值分配&#xff0c;相当于PW0端在PA0和PB0之间滑动。如下图所示&#xff1a; MCP41010是10K欧姆规格的数字电位器&#xff0c;即PA0和PB0之间的阻值恒…

Spring Boot 中的 @HystrixCommand 注解

Spring Boot 中的 HystrixCommand 注解 简介 在分布式系统中&#xff0c;服务之间的调用是不可避免的。但随着服务数量的增加&#xff0c;服务之间的依赖关系也会变得越来越复杂&#xff0c;服务的故障也会变得越来越常见。一旦某个服务出现故障&#xff0c;它所依赖的服务也…

Helm之深入浅出Kubernetes包管理工具基础

Helm 基础 作者&#xff1a;行癫&#xff08;盗版必究&#xff09; 一&#xff1a;Helm 简介 1.简介 ​ Helm 是 Kubernetes 的包管理器&#xff1b;它提供了提供、共享和使用为 Kubernetes 构建的软件的能力&#xff1b;是CNCF的毕业项目&#xff0c;自 Helm 加入 CNCF 以来…

【Canal】从原理、配置出发,从0到1完成Canal搭建

文章目录 简介工作原理MySQL主备复制原理canal 工作原理 Canal架构Canal-HA机制应用场景同步缓存 Redis /全文搜索 ES下发任务数据异构 MySQL 配置开启 binlog扩展statementrowmixed 配置权限 Canal 配置配置启动报错解决 实战引入依赖代码样例测试 前几天在网上冲浪的时候发现…

MYSQL03高级_新增用户、授予权限、授权底层表结构、角色理解

文章目录 ①. 登录服务器操作②. 用户的增删改③. 修改用户密码④. MySQL8密码管理⑤. 权限列表及原则⑥. 授予查看回收权限⑦. 底层权限表操作⑧. 角色的理解 ①. 登录服务器操作 ①. 启动MySQL服务后,可以通过mysql命令来登录MySQL服务器,命令如下: mysql –h hostname|hos…

chatgpt赋能python:搜索Python答案的软件

搜索Python答案的软件 介绍&#xff1a;什么是搜索Python答案的软件&#xff1f; 搜索Python答案的软件是一种工具&#xff0c;可以帮助编程人员快速地找到他们在编写Python代码时遇到的问题的答案。这种软件可以搜索各种不同的网站&#xff0c;以帮助用户找到最适合他们问题…

实例006 菜级联菜单

实例说明 如果管理程序功能菜单非常多&#xff0c;一些功能中又包括许多子功能&#xff0c;这时可以使用级联菜单来组织系统的各个功能。实例运行结果如图1.6所示。 图1.6 级联菜单 技术要点 制作级联菜单需要使用MenuStrip控件。 注意&#xff1a;在使用级联菜单时最好不要…

Redis三种模式——主从复制、哨兵、集群

目录 一、概述 二、 Redis 主从复制 1.主从复制的作用 2. 主从复制流程 3. 搭建Redis 主从复制 3.1准备环境 3.2安装redis 3.3创建redis工作目录 3.4环境变量 3.5定义systemd服务管理脚本 3.6修改 Redis 配置文件&#xff08;Master节点操作&#xff09; 3.7修改 …

我在「亚马逊云科技中国峰会」做讲师 - 「程序员的社区成长史」

文章目录 ⭐️ Part - 〇&#xff1a;开场的自我介绍⭐️ Part - ①&#xff1a;程序员的学习从技术社区开始&#x1f31f; 编程初学者共同面对的迷茫&#x1f31f; 加入一个适合自己的技术社区&#x1f31f; 反哺社区做有价值的贡献者 ⭐️ Part - ②&#xff1a;与技术社区的…

STM32F4 WiFi上传温度【ds18b20传感器、网络通信】

通过WIFI或GPRS上传温度到云端 本篇博客将介绍如何使用WIFI或GPRS模块将温度数据上传到云端。我们将涵盖连接网络的过程、上传数据的过程以及相关代码。 准备工作 在开始之前&#xff0c;我们需要准备以下材料&#xff1a; STM32F4开发板温度传感器&#xff08;例如18B20&a…

ch0_汇编介绍

1. 汇编作用 1.1 1.2 1.3 2.  机器语言到汇编语言 2.1 2.2 2.3 3.  计算机的组成 3.1 指令和数据是存放在存储器中的&#xff0c; 而计算机包含多种存储器&#xff1b; 但是&#xff0c;在计算机工作的过程中&#xff0c; 指令和数据则必须存放到内存中。 而对于…

代码随想录二刷day41 | 动态规划之 343. 整数拆分 96.不同的二叉搜索树

day41 343. 整数拆分确定dp数组&#xff08;dp table&#xff09;以及下标的含义确定递推公式dp的初始化确定遍历顺序举例推导dp数组 96.不同的二叉搜索树确定dp数组&#xff08;dp table&#xff09;以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组 34…

【每日一题Day254】LC445两数相加Ⅱ | 链表反转 栈

两数相加Ⅱ【LC445】 给定两个 非空链表 l1和 l2 来代表两个非负整数。数字最高位位于链表开始位置。它们的每个节点只存储一位数字。将这两数相加会返回一个新的链表。 可以假设除了数字 0 之外&#xff0c;这两个数字都不会以零开头。 原来是专题模拟 反转链表 2022/11/4 思…

MySQL 记一个调优记录:最大化获取 uid 和 mobile

目录 前言调优过程总结 前言 环境&#xff1a;MySQL 5.6、windows 11 前阵子&#xff0c;有一个 BI 看板跑不起来&#xff0c;每次执行跑了很久&#xff0c;还不一定有结果&#xff0c;急需维护迭代。 经过调试&#xff0c;发现看板的SQL 逻辑中有一个开销非常大的逻辑影响了整…

2 Prometheus 简介

目录 1. 起源 2. Prometheus 架构 2.1 指标收集 2.2 服务发现 2.3 聚合和警报 2.4 查询数据 2.5 服务自治 2.6 冗余和高可用性 2.7 可视化 3. Prometheus数据模型 3.1 指标名称 3.2 标签 3.3 采样数据 3.4 符号表示 3.5 保留时间 4. 安全模型 5. Prometheus生态…

AI会取代程序员吗?这几个事实告诉你真相

人工智能&#xff08;AI&#xff09;的迅猛发展引起了许多关于其对各行各业的影响的讨论&#xff0c;其中包括程序员的未来。有人认为&#xff0c;AI的出现可能会使程序员岗位面临消失的风险&#xff0c;因为它们可以自动化编码和解决问题的过程。然而&#xff0c;在我们下结论…

MySQL:UNION的使用

UNION的使用 前言一、合并查询结果二、语法格式&#xff1a;三、UNION操作符四、UNION ALL操作符五、使用 前言 本博主将用CSDN记录软件开发求学之路上亲身所得与所学的心得与知识&#xff0c;有兴趣的小伙伴可以关注博主&#xff01; 也许一个人独行&#xff0c;可以走的很快…

全志V3S嵌入式驱动开发(full image制作和资料汇总)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 所谓的full image制作&#xff0c;就是制作一个image&#xff0c;上面包含了所有的嵌入式软件、库和配置文件。之前虽然我们也构建了spi-nor、spi-…