二进制部署Kubernetes

news2024/11/17 17:53:33

二进制部署Kubernetes v1.20

k8s集群master01:192.168.142.10    kube-apiserver kube-controller-manager kube-scheduler etcd
k8s集群master02:192.168.142.20

k8s集群node01:192.168.142.30    kubelet kube-proxy docker 
k8s集群node02:192.168.142.40

etcd集群节点1:192.168.142.10    etcd
etcd集群节点2:192.168.142.30
etcd集群节点3:192.168.142.40

负载均衡nginx+keepalive01(master):192.168.142.50
负载均衡nginx+keepalive02(backup):192.168.142.60

------------------------------ 操作系统初始化配置 ------------------------------

#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X

#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab

#根据规划设置主机名
hostnamectl set-hostname master01
hostnamectl set-hostname node01
hostnamectl set-hostname node02

#在所有主机添加hosts
cat >> /etc/hosts << EOF
192.168.142.10 master01
192.168.142.30 node01
192.168.142.40 node02
EOF

#调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF

sysctl --system

#时间同步
yum install ntpdate -y
ntpdate time.windows.com

 ------------------------------ 部署 etcd 集群 ------------------------------

etcd是CoreOS团队于2013年6月发起的开源项目,它的目标是构建一个高可用的分布式键值(key-value)数据库。etcd内部采用raft协议作为一致性算法,etcd是go语言编写的。

etcd 作为服务发现系统,有以下的特点:
简单:安装配置简单,而且提供了HTTP API进行交互,使用也很简单
安全:支持SSL证书验证
快速:单实例支持每秒2k+读操作
可靠:采用raft算法,实现分布式系统数据的可用性和一致性

etcd 目前默认使用2379端口提供HTTP API服务, 2380端口和peer通信(这两个端口已经被IANA(互联网数字分配机构)官方预留给etcd)。 即etcd默认使用2379端口对外为客户端提供通讯,使用端口2380来进行服务器间内部通讯。
etcd 在生产环境中一般推荐集群方式部署。由于etcd 的leader选举机制,要求至少为3台或以上的奇数台。

---------- 准备签发证书环境 ----------

CFSSL 是 CloudFlare 公司开源的一款 PKI/TLS 工具。 CFSSL 包含一个命令行工具和一个用于签名、验证和捆绑 TLS 证书的 HTTP API 服务。使用Go语言编写。
CFSSL 使用配置文件生成证书,因此自签之前,需要生成它识别的 json 格式的配置文件,CFSSL 提供了方便的命令行生成配置文件。
CFSSL 用来为 etcd 提供 TLS 证书,它支持签三种类型的证书:
1、client 证书,服务端连接客户端时携带的证书,用于客户端验证服务端身份,如 kube-apiserver 访问 etcd;
2、server 证书,客户端连接服务端时携带的证书,用于服务端验证客户端身份,如 etcd 对外提供服务;
3、peer 证书,相互之间连接时使用的证书,如 etcd 节点之间进行验证和通信。
这里全部都使用同一套证书认证。

//在 master01 节点上操作

#准备cfssl证书生成工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo

chmod +x /usr/local/bin/cfssl*


cfssl:证书签发的工具命令
cfssljson:将 cfssl 生成的证书(json格式)变为文件承载式证书
cfssl-certinfo:验证证书的信息
cfssl-certinfo -cert <证书名称>            #查看证书的信息


### 生成Etcd证书 ###

mkdir /opt/k8s
cd /opt/k8s/

#上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
chmod +x etcd-cert.sh etcd.sh

#创建用于生成CA证书、etcd 服务器证书以及私钥的目录
修改etcd-cert.shIP地址
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh            #生成CA证书、etcd 服务器证书以及私钥

ls
ca-config.json  ca-csr.json  ca.pem        server.csr       server-key.pem
ca.csr          ca-key.pem   etcd-cert.sh  server-csr.json  server.pem

#上传 etcd-v3.4.9-linux-amd64.tar.gz 到 /opt/k8s 目录中,启动etcd服务
cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
ls etcd-v3.4.9-linux-amd64
Documentation  etcd  etcdctl  README-etcdctl.md  README.md  READMEv2-etcdctl.md


etcd就是etcd 服务的启动命令,后面可跟各种启动参数
etcdctl主要为etcd 服务提供了命令行操作


#创建用于存放 etcd 配置文件,命令文件,证书的目录

 #进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况

#可另外打开一个窗口查看etcd进程是否正常
ps -ef | grep etcd

 #把etcd相关证书文件、命令文件和服务管理文件全部拷贝到另外两个etcd集群节点

scp -r /opt/etcd/ root@192.168.142.30:/opt/
scp -r /opt/etcd/ root@192.168.142.40:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.142.30:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.142.40:/usr/lib/systemd/system/

//在 node01 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd02"                                            #修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.142.30:2380"            #修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.142.30:2379"        #修改

#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.142.30:2380"        #修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.142.30:2379"                #修改
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.142.10:2380,etcd02=https://192.168.142.30:2380,etcd03=https://192.168.142.40:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"

#启动etcd服务
systemctl start etcd
systemctl enable etcd
systemctl status etcd

 node节点都启动etcd后,在master的etcd

 #检查etcd群集状态
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.142.10:2379,https://192.168.142.30:2379,https://192.168.142.40:2379" endpoint health --write-out=table


--cert-file:识别HTTPS端使用SSL证书文件
--key-file:使用此SSL密钥文件标识HTTPS客户端
--ca-file:使用此CA证书验证启用https的服务器的证书
--endpoints:集群中以逗号分隔的机器地址列表
cluster-health:检查etcd集群的运行状况


#查看etcd集群成员列表

 ------------------------------ 部署 docker引擎 ------------------------------

//所有 node 节点部署docker引擎
yum install -y yum-utils device-mapper-persistent-data lvm2 
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 
yum install -y docker-ce docker-ce-cli containerd.io

systemctl start docker.service
systemctl enable docker.service

 ------------------------------ 部署 Master 组件 ------------------------------

//在 master01 节点上操作
#上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中,解压 master.zip 压缩包
cd /opt/k8s/
unzip master.zip
chmod +x *.sh

#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#创建用于生成CA证书、相关组件的证书和私钥的目录
mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh                #生成CA证书、相关组件的证书和私钥

ls *pem
admin-key.pem  apiserver-key.pem  ca-key.pem  kube-proxy-key.pem  
admin.pem      apiserver.pem      ca.pem      kube-proxy.pem

#复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中
cp ca*pem apiserver*pem /opt/kubernetes/ssl/

#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 kubernetes 压缩包
cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz

#复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/

#创建 bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用 RBAC 给他授权
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF

chmod +x token.sh
./token.sh

cat /opt/kubernetes/cfg/token.csv

#二进制文件、token、证书都准备好后,开启 apiserver 服务
cd /opt/k8s/
./apiserver.sh 192.168.142.10 https://192.168.142.10:2379,https://192.168.142.30:2379,https://192.168.142.40:2379

#检查进程是否启动成功
ps aux | grep kube-apiserver

netstat -natp | grep 6443   #安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证


#启动 scheduler 服务
cd /opt/k8s/
./scheduler.sh
ps aux | grep kube-scheduler

#启动 controller-manager 服务
./controller-manager.sh
ps aux | grep kube-controller-manager

#生成kubectl连接集群的kubeconfig文件
./admin.sh

#绑定默认cluster-admin管理员集群角色,授权kubectl访问集群
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

#通过kubectl工具查看当前集群组件状态
kubectl get cs
NAME                 STATUS    MESSAGE             ERROR
controller-manager   Healthy   ok                  
scheduler            Healthy   ok                  
etcd-2               Healthy   {"health":"true"}   
etcd-1               Healthy   {"health":"true"}   
etcd-0               Healthy   {"health":"true"}  

#查看版本信息
kubectl version

 每个脚本文件都要进去改ip地址

 ------------------------------ 部署 Worker Node 组件 ------------------------------

//在所有 node 节点上操作
#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包,获得kubelet.sh、proxy.sh
cd /opt/
unzip node.zip
chmod +x kubelet.sh proxy.sh

//在 master01 节点上操作
#把 kubelet、kube-proxy 拷贝到 node 节点
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.142.30:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.142.40:/opt/kubernetes/bin/

#上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中,生成kubelet初次加入集群引导kubeconfig文件和kube-proxy.kubeconfig文件
#kubeconfig 文件包含集群参数(CA 证书、API Server 地址),客户端参数(上面生成的证书和私钥),集群 context 上下文参数(集群名称、用户名)。Kubenetes 组件(如 kubelet、kube-proxy)通过启动时指定不同的 kubeconfig 文件可以切换到不同的集群,连接到 apiserver。
mkdir /opt/k8s/kubeconfig

cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.142.10 /opt/k8s/k8s-cert/

#把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 拷贝到 node 节点
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.142.30:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.142.40:/opt/kubernetes/cfg/

#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书
如果执行这一步骤,报错,提示用户存在
kubectl delate clusterrolebinding kubelet-bootstrap
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap


kubelet 采用 TLS Bootstrapping 机制,自动完成到 kube-apiserver 的注册,在 node 节点量较大或者后期自动扩容时非常有用。
Master apiserver 启用 TLS 认证后,node 节点 kubelet 组件想要加入集群,必须使用CA签发的有效证书才能与 apiserver 通信,当 node 节点很多时,签署证书是一件很繁琐的事情。因此 Kubernetes 引入了 TLS bootstraping 机制来自动颁发客户端证书,kubelet 会以一个低权限用户自动向 apiserver 申请证书,kubelet 的证书由 apiserver 动态签署。

kubelet 首次启动通过加载 bootstrap.kubeconfig 中的用户 Token 和 apiserver CA 证书发起首次 CSR 请求,这个 Token 被预先内置在 apiserver 节点的 token.csv 中,其身份为 kubelet-bootstrap 用户和 system:kubelet-bootstrap 用户组;想要首次 CSR 请求能成功(即不会被 apiserver 401 拒绝),则需要先创建一个 ClusterRoleBinding,将 kubelet-bootstrap 用户和 system:node-bootstrapper 内置 ClusterRole 绑定(通过 kubectl get clusterroles 可查询),使其能够发起 CSR 认证请求。

TLS bootstrapping 时的证书实际是由 kube-controller-manager 组件来签署的,也就是说证书有效期是 kube-controller-manager 组件控制的;kube-controller-manager 组件提供了一个 --experimental-cluster-signing-duration 参数来设置签署的证书有效时间;默认为 8760h0m0s,将其改为 87600h0m0s,即 10 年后再进行 TLS bootstrapping 签署证书即可。

也就是说 kubelet 首次访问 API Server 时,是使用 token 做认证,通过后,Controller Manager 会为 kubelet 生成一个证书,以后的访问都是用证书做认证了。


//在 node01 节点上操作
#启动 kubelet 服务
cd /opt/
./kubelet.sh 192.168.142.30
ps aux | grep kubelet

//在 master01 节点上操作,通过 CSR 请求
#检查到 node01 节点的 kubelet 发起的 CSR 请求,Pending 表示等待集群给该节点签发证书
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   12s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending

#通过 CSR 请求
kubectl certificate approve node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE

#修改docker配置文件
vim /etc/docker/daemon.json

{"exec-opts": ["native.cgroupdriver=systemd"]}

#Approved,Issued 表示已授权 CSR 请求并签发证书
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   2m5s kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#查看节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady
kubectl get node
NAME            STATUS     ROLES    AGE    VERSION
192.168.142.30   NotReady   <none>   108s   v1.20.11

//在 node01 节点上操作
#加载 ip_vs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#启动proxy服务
cd /opt/
./proxy.sh 192.168.142.30
ps aux | grep kube-proxy

 ------------------------------ 部署 CNI 网络组件 ------------------------------

---------- 部署 flannel ----------

K8S 中 Pod 网络通信:
●Pod 内容器与容器之间的通信
在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信
每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信
Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network:
叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

VXLAN:
将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel:
Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 udp、vxlan、 host-GW 3种数据转发方式。

#Flannel udp 模式的工作原理:
数据从 node01 上 Pod 的源容器中发出后,经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。
Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。

#ETCD 之 Flannel 提供说明:
存储管理Flannel可分配的IP地址段资源
监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 udp 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 vxlan 模式差。

#vxlan 模式:
vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:
(1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好
(2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp
(3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,arp广播等二层知识,udp模式主要关注路由

#Flannel vxlan 模式的工作原理:
vxlan在内核当中实现,当数据包使用vxlan设备发送数据时,会打上vlxan的头部信息,在发送出去,对端解包,flannel.1网卡把原始报文发送到目的服务器。


//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar

mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-hjtc7   1/1     Running   0          7s

kubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.142.30   Ready    <none>   81m   v1.20.11

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/707222.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Java汽车售票网站设计实现(源码+lw+部署文档+讲解等)

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

VUE_网页自定义右键菜单组件

可以在uni-app或vue脚手架项目使用 引入组件会接管页面右键事件&#xff0c;所有options为空数组时&#xff0c;在页面右键将没有反应 rightMenu.vue <template><view><view v-if"show" class"contextMenu" :style"lay_style"…

Kafka:Kafka资料整理

一、官网 二、博主文章 1、kafka是什么 • Worktile社区 三、源码解读

一文了解云计算

目录 &#x1f34e;云服务 &#x1f34e;云计算类型 &#x1f352;公有云 &#x1f352;私有云 &#x1f352;混合云 &#x1f34e;云计算服务模式 &#x1f352;IaaS基础设施即服务 &#x1f352;PaaS平台即服务 &#x1f352;SaaS软件即服务 &#x1f352;三者之间区别 &…

4.springboot原理篇

原理篇 spring与springboot区别 spring是承载容器 springboot做的主要工作&#xff1a; ①简化配置&#xff08;省去了spring中配置xml&#xff0c;引入application.yml文件&#xff09; ②为我们提供了 spring-boot-starter-web 依赖&#xff0c;这个依赖包含了Tomcat和sprin…

二进制搭建Kubernetes集群(二)——部署Worker Node 组件

四.部署node节点 4.1 所有node节点部署 docker引擎 #所有 node 节点部署docker引擎#安装依赖包yum install -y yum-utils device-mapper-persistent-data lvm2#设置阿里云镜像源yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker- ce.…

Nuget更新全局包、缓存和临时文件夹路径位置

Nuget更新缓存 1、查看默认的Nuget路径2、更改全局包路径2.1 通过环境变量来进行修改2.2通过Nuget.Config配置文件来进行修改 3、更改http-cache路径4、更改temp文件路径5、更改plugins-cache文件路径 NuGet是一个流行的软件包管理器&#xff0c;可以帮助.NET开发人员轻松地添加…

【Python】 【Pandas 】【read_csv()】Pandas库的read_csv()方法的使用,处理:None,NULL

近期&#xff0c;使用read_csv的时候&#xff0c;遇到一个问题&#xff0c;就是本地读取的csv文件中的数据有None和NaN 两种&#xff0c;如&#xff1a; 直接使用 pd.read_csv(rF:\我爱Python\预测\历史样本.csv,encodingutf-8)发现读取的数据是将None 和 NULL 直接处理成 NaN…

SpingData-JDBC(看这篇文章就够了,新手入门指引)

JdbcTemplate 的基本使用 写在前面&#xff1a; 当DDL操作时&#xff0c;一般是用execute方法&#xff0c;这也是一种规范吧&#xff0c;这个也可以运行DML但是通常来说我DML操作是需要返回值的&#xff0c;一般就是返回影响的行数。然后这篇文章主要介绍增删改查&#xff0c…

软考A计划-系统集成项目管理工程师-项目范围管理(四)

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff…

Linux服务器网卡流量过高排查

第一种方式&#xff1a;nethogs 1.安装 yum -y install nethogs #nethogs em1 -d 3 监控eth0 并每3s刷新一次 手动安装 wget https://github.com/raboof/nethogs/archive/v0.8.5.tar.gz 依赖包&#xff1a; yum install -y libpcap libpcap-devel 编译&#xff1a; mak…

④数据封装对象(Vo、Bo、Po..)+MySQL视图

1.数据封装对象 VO&#xff08;View Object&#xff09;&#xff1a;视图对象&#xff0c;用于展示层&#xff0c;它的作用是把某个指定页面&#xff08;或组件&#xff09;的所有数据封装起来。 DTO&#xff08;Data Transfer Object&#xff09;&#xff1a;数据传输对象&a…

小黑特种兵重庆行走一天,体验了当地风土人情的leetcode之旅:剑指 Offer II 014. 字符串中的变位词

小黑代码 class Solution:def checkInclusion(self, s1: str, s2: str) -> bool:# 字符串长度n_s1 len(s1)n_s2 len(s2)if n_s1 > n_s2:return False# s1的字符计数字典count_s1 [0] * 26# 窗口计数字典count_window [0] * 26# 寻找初始窗口for i in range(n_s1):co…

SpringBoot(四)SpringBoot搭建简单服务端

通过之前的几篇文章相信大家已经对SpringBoot项目开发有了一个基本的了解。本篇&#xff0c;介绍下如何使用SpringBoot搭建一个简单的服务端&#xff0c;实现一个新用户注册的场景&#xff0c;供前端和移动端去使用。本篇需要你对SpringBoot的starter&#xff0c;mysql&#xf…

Redis概述及安装、使用和管理

文章目录 一、NoSQL非关系型数据库1.NoSQL概述2.关系型数据库和非关系型数据库区别&#xff08;1&#xff09;数据存储方式不同&#xff08;2&#xff09;扩展方式不同&#xff08;3&#xff09;对事务性的支持不同 3.非关系型数据库使用场景 二、Redis概述1.简介2.优点3.Redis…

Learn Mongodb了解DB数据库 ④

作者 : SYFStrive 博客首页 : HomePage &#x1f4dc;&#xff1a; PHP MYSQL &#x1f4cc;&#xff1a;个人社区&#xff08;欢迎大佬们加入&#xff09; &#x1f449;&#xff1a;社区链接&#x1f517; &#x1f4cc;&#xff1a;觉得文章不错可以点点关注 &#x1f44…

SIMATIC WINCC中实现弹窗跟随鼠标功能(C语言脚本)的具体方法示例

SIMATIC WINCC中实现弹窗跟随鼠标功能(C语言脚本)的具体方法示例 具体C语言脚本可参考以下代码: #include "apdefap.h" //添加的头文件//定义的函数 void OnLButtonDown(char* lpszPictureName, char* lpszObjectName, char

七.错误处理

目录 1、错误处理 1、error一般是处理一些比较低级的错误&#xff0c;不会造成程序中断或者宕机。 2、panic一般是发生了致命的错误时才会被调用&#xff0c;例如数组越界&#xff0c;空指针等等&#xff0c; 2.1 手动调用panic 2.2 数组越界造成panic 2、recover函数 1、…

PaddleSeg中交互式分割EISeg的使用

EISeg(Efficient Interactive Segmentation)是基于飞桨开发的一个高效智能的交互式分割标注软件。它涵盖了通用、人像、遥感、医疗、视频等不同方向的高质量交互式分割模型。另外&#xff0c;将EISeg获取到的标注应用到PaddleSeg提供的其他分割模型进行训练&#xff0c;便可得到…

stm32-iic 时序驱动

数据发送 #include "IIC.h" #include "delay.h"void IIC_Init(void){GPIO_InitTypeDef GPIO_InitStruct;//使能GPIPFRCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//初始GPIGB8 GPIGB9 GPIO_InitStruct.GPIO_Pin GPIO_Pin_8 | GPIO_Pin_9; …