记一次Native memory leak排查过程 | 京东云技术团队

news2025/1/23 12:19:09

1 问题现象

路由计算服务是路由系统的核心服务,负责运单路由计划的计算以及实操与计划的匹配。在运维过程中,发现在长期不重启的情况下,有TP99缓慢爬坡的现象。此外,在每周例行调度的试算过程中,能明显看到内存的上涨。以下截图为这两个异常情况的监控。

TP99爬坡

内存爬坡

机器配置如下

CPU: 16C RAM: 32G

Jvm配置如下:

-Xms20480m (后面切换到了8GB) -Xmx20480m (后面切换到了8GB) -XX:MaxPermSize=2048m -XX:MaxGCPauseMillis=200 -XX:+ParallelRefProcEnabled -XX:+PrintReferenceGC -XX:+UseG1GC -Xss256k -XX:ParallelGCThreads=16 -XX:ConcGCThreads=4 -XX:MaxDirectMemorySize=2g -Dsun.net.inetaddr.ttl=600 -Dlog4j2.contextSelector=org.apache.logging.log4j.core.async.AsyncLoggerContextSelector -Dlog4j2.asyncQueueFullPolicy=Discard -XX:MetaspaceSize=1024M -XX:G1NewSizePercent=35 -XX:G1MaxNewSizePercent=35

例行任务调度情况:

每周一凌晨2:00触发执行。上面截图,共包含了两个周期的任务。可以看到,在第一次执行时,内存直接从33%爬升至75%。在第二次执行时,爬坡至88%后,OOM异常退出。

2 问题排查

由于有两种现象,所以排查有两条主线。第一条是以追踪OOM原因为目的的内存使用情况排查,简称内存问题排查。第二条是TP99缓慢增长原因排查,简称性能下降问题排查。

2.1 性能下降问题排查

由于是缓慢爬坡,而且爬坡周期与服务重启有直接关系,所以可以排出外部接口性能问题的可能。优先从自身程序找原因。因此,首先排查GC情况和内存情况。下面是经过长期未重启的GC log。这是一次YGC,总耗时1.16秒。其中Ref Proc环节消耗了1150.3 ms,其中的JNI Weak Reference的回收消耗了1.1420596秒。而在刚重启的机器上,JNI Weak Reference的回收时间为0.0000162秒。所以可以定位到,TP99增加就是JNI Weak Reference回收周期增长导致的。

JNI Weak Reference顾名思义,应该跟Native memory的使用有关。不过由于Native memory排查难度较大。所以还是先从堆的使用情况开始排查,以碰碰运气的心态,看是否能发现蛛丝马迹。

2.2 内存问题排查

回到内存方面,经过建哥提示,应该优先复现问题。并且在每周触发的任务都会稳定复现内存上涨,所以从调度任务这个方向,排查更容易一些。通过@柳岩的帮助,具备了在试算环境随时复现问题的能力。

内存问题排查,仍然是从堆内内存开始。多次dump后,尽管java进程的总内存使用量持续上涨,但是堆内存使用量并未见明显增长。通过申请root权限,并部署arthas后,通过arthas的dashbord功能,可以明显看到,堆(heap)和非堆(nonheap)都保持平稳。

arthas dashboard

内存使用情况,存在翻倍现象

由此可以断定,是native memory使用量增长,导致整个java应用的内存使用率增长。分析native的第一步是需要jvm开启-XX:NativeMemoryTracking=detail。

2.2.1 使用jcmd查看内存整体情况

jcmd可以打印java进程所有内存分配情况,当开启NativeMemoryTracking=detail参数后,可以看到native方法调用栈信息。在申请root权限后,直接使用yum安装即可。

安装好后,执行如下命令。

jcmd <pid> VM.native_memory detail

jcmd结果展示

上图中,共包含两部分,第一部分是内存总体情况摘要,包括总内存使用量,以及分类使用情况。分类包括:Java Heap、Class、Thread、Code、GC、Compiler、Internal、Symbol、Native Memory Tracking、Arena Chunk、Unknown,每个分类的介绍,可以看这篇文档;第二部分是详情,包括了每段内存分配的起始地址和结束地址,具体大小,和所属的分类。比如截图中的部分,是描述了为Java heap分配了8GB的内存(后面为了快速复现问题,heap size从20GB调整为8GB)。后面缩进的行,代表了内存具体分配的情况。

间隔2小时,使用jcmd dump两次后,进行对比。可以看到Internal这部分,有明显的增长。Internal是干什么的,为什么会增长?经过Google,发现此方面的介绍非常少,基本就是命令行解析、JVMTI等调用。请教@崔立群后,了解到JVMTI可能与java agent相关,在路由计算中,应该只有pfinder与java agent有关,但是底层中间件出问题的影响面,不应该只有路由一家,所以只是问了一下pfinder研发,就没再继续投入跟进。

2.2.2 使用pmap和gdb分析内存

首先给出此方式的结论,这种分析由于包含了比较大的猜测的成分,所以不建议优先尝试。整体的思路是,使用pmap将java进程分配的所有内存进行输出,挑选出可疑的内存区间,使用gdb进行dump,并编码可视化其内容,进行分析。
网上有很多相关博客,都通过分析存在大量的64MB内存分配块,从而定位到了链接泄漏的案例。所以我也在我们的进程上查看了一下,确实包含很多64MB左右的内存占用。按照博客中介绍,将内存编码后,内容大部分为JSF相关,可以推断是JSF netty 使用的内存池。我们使用的1.7.4版本的JSF并未有内存池泄漏问题,所以应当与此无关。
pmap:https://docs.oracle.com/cd/E56344_01/html/E54075/pmap-1.html
gdb:https://segmentfault.com/a/1190000024435739

2.2.3 使用strace分析系统调用情况

这应该算是碰运气的一种分析方法了。思路就是使用strace将每次分配内存的系统调用输出,然后与jstack中线程进行匹配。从而确定具体是由哪个java线程分配的native memory。这种效率最低,首先系统调用非常频繁,尤其在RPC较多的服务上面。所以除了比较明显的内存泄漏情况,容易用此种方式排查。如本文的缓慢内存泄漏,基本都会被正常调用淹没,难以观察。

2.3 问题定位

经过一系列尝试,均没有定位根本原因。所以只能再次从jcmd查出的Internal内存增长这个现象入手。到目前,还有内存分配明细这条线索没有分析,尽管有1.2w行记录,只能顺着捋一遍,希望能发现Internal相关的线索。

通过下面这段内容,可以看到分配32k Internal内存空间后,有两个JNIHandleBlock相关的内存分配,分别是4GB和2GB,MemberNameTable相关调用,分配了7GB内存。

[0x00007fa4aa9a1000 - 0x00007fa4aa9a9000] reserved and committed 32KB for Internal from
    [0x00007fa4a97be272] PerfMemory::create_memory_region(unsigned long)+0xaf2
    [0x00007fa4a97bcf24] PerfMemory::initialize()+0x44
    [0x00007fa4a98c5ead] Threads::create_vm(JavaVMInitArgs*, bool*)+0x1ad
    [0x00007fa4a952bde4] JNI_CreateJavaVM+0x74

[0x00007fa4aa9de000 - 0x00007fa4aaa1f000] reserved and committed 260KB for Thread Stack from
    [0x00007fa4a98c5ee6] Threads::create_vm(JavaVMInitArgs*, bool*)+0x1e6
    [0x00007fa4a952bde4] JNI_CreateJavaVM+0x74
    [0x00007fa4aa3df45e] JavaMain+0x9e
Details:

[0x00007fa4a946d1bd] GenericGrowableArray::raw_allocate(int)+0x17d
[0x00007fa4a971b836] MemberNameTable::add_member_name(_jobject*)+0x66
[0x00007fa4a9499ae4] InstanceKlass::add_member_name(Handle)+0x84
[0x00007fa4a971cb5d] MethodHandles::init_method_MemberName(Handle, CallInfo&)+0x28d
                             (malloc=7036942KB #10)

[0x00007fa4a9568d51] JNIHandleBlock::allocate_handle(oopDesc*)+0x2f1
[0x00007fa4a9568db1] JNIHandles::make_weak_global(Handle)+0x41
[0x00007fa4a9499a8a] InstanceKlass::add_member_name(Handle)+0x2a
[0x00007fa4a971cb5d] MethodHandles::init_method_MemberName(Handle, CallInfo&)+0x28d
                             (malloc=4371507KB #14347509)

[0x00007fa4a956821a] JNIHandleBlock::allocate_block(Thread*)+0xaa
[0x00007fa4a94e952b] JavaCallWrapper::JavaCallWrapper(methodHandle, Handle, JavaValue*, Thread*)+0x6b
[0x00007fa4a94ea3f4] JavaCalls::call_helper(JavaValue*, methodHandle*, JavaCallArguments*, Thread*)+0x884
[0x00007fa4a949dea1] InstanceKlass::register_finalizer(instanceOopDesc*, Thread*)+0xf1
                             (malloc=2626130KB #8619093)

[0x00007fa4a98e4473] Unsafe_AllocateMemory+0xc3
[0x00007fa496a89868]
                             (malloc=239454KB #723)

[0x00007fa4a91933d5] ArrayAllocator<unsigned long, (MemoryType)7>::allocate(unsigned long)+0x175
[0x00007fa4a9191cbb] BitMap::resize(unsigned long, bool)+0x6b
[0x00007fa4a9488339] OtherRegionsTable::add_reference(void*, int)+0x1c9
[0x00007fa4a94a45c4] InstanceKlass::oop_oop_iterate_nv(oopDesc*, FilterOutOfRegionClosure*)+0xb4
                             (malloc=157411KB #157411)

[0x00007fa4a956821a] JNIHandleBlock::allocate_block(Thread*)+0xaa
[0x00007fa4a94e952b] JavaCallWrapper::JavaCallWrapper(methodHandle, Handle, JavaValue*, Thread*)+0x6b
[0x00007fa4a94ea3f4] JavaCalls::call_helper(JavaValue*, methodHandle*, JavaCallArguments*, Thread*)+0x884
[0x00007fa4a94eb0d1] JavaCalls::call_virtual(JavaValue*, KlassHandle, Symbol*, Symbol*, JavaCallArguments*, Thread*)+0x321
                             (malloc=140557KB #461314)

通过对比两个时间段的jcmd的输出,可以看到JNIHandleBlock相关的内存分配,确实存在持续增长的情况。因此可以断定,就是JNIHandles::make_weak_global 这部分内存分配,导致的泄漏。那么这段逻辑在干什么,是什么导致的泄漏?

通过Google,找到了Jvm大神的文章,为我们解答了整个问题的来龙去脉。问题现象与我们的基本一致。博客:https://blog.csdn.net/weixin_45583158/article/details/100143231

其中,寒泉子给出了一个复现问题的代码。在我们的代码中有一段几乎一摸一样的,这确实包含了运气成分。

// 博客中的代码
public static void main(String args[]){

        while(true){

            MethodType type = MethodType.methodType(double.class, double.class);

            try {

                MethodHandle mh = lookup.findStatic(Math.class, "log", type);

            } catch (NoSuchMethodException e) {

                e.printStackTrace();

            } catch (IllegalAccessException e) {

                e.printStackTrace();

            }

        }

    }
}

jvm bug:https://bugs.openjdk.org/browse/JDK-8152271

就是上面这个bug,频繁使用MethodHandles相关反射,会导致过期对象无法被回收,同时会引发YGC扫描时间增长,导致性能下降。

3 问题解决

由于jvm 1.8已经明确表示,不会在1.8处理这个问题,会在java 重构。但是我们短时间也没办法升级到java 。所以没办法通过直接升级JVM进行修复。由于问题是频繁使用反射,所以考虑了添加缓存,让频率降低,从而解决性能下降和内存泄漏的问题。又考虑到线程安全的问题,所以将缓存放在ThreadLocal中,并添加LRU的淘汰规则,避免再次泄漏情况发生。

最终修复效果如下,内存增长控制在正常的堆内存设置范围内(8GB),增涨速度较温和。重启2天后,JNI Weak Reference时间为0.0001583秒,符合预期。

4 总结

Native memory leak的排查思路与堆内内存排查类似,主要是以分时dump和对比为主。通过观察异常值或异常增长量的方式,确定问题原因。由于工具差异,Native memory的排查过程,难以将内存泄漏直接与线程相关联,可以通过strace方式碰碰运气。此外,根据有限的线索,在搜索引擎上进行搜索,也许会搜到相关的排查过程,收到意外惊喜。毕竟jvm还是非常可靠的软件,所以如果存在比较严重的问题,应该很容易在网上找到相关的解决办法。如果网上的内容较少,那可能还是需要考虑,是不是用了过于小众的软件依赖。

在开发方面,尽量使用主流的开发设计模式。尽管技术没有好坏之分,但是像反射、AOP等实现方式,需要限制使用范围。因为这些技术,会影响代码的可读性,并且性能也是在不断增加的AOP中,逐步变差的。另外,在新技术尝试方面,尽量从边缘业务开始。在核心应用中,首先需要考虑的就是稳定性问题,这种意识可以避免踩一些别人难以遇到的坑,从而减少不必要的麻烦。

作者:京东物流 陈昊龙

来源:京东云开发者社区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/703336.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Windows开启telnect

1、Telnet是什么&#xff1f; Telnet 是一种网络协议&#xff0c;用于通过网络远程登录到远程计算机或设备上。它允许用户在本地计算机上使用命令行界面&#xff08;命令提示符&#xff09;与远程主机进行交互&#xff0c;就像直接在远程主机上操作一样。Telnet 协议使用 TCP/I…

【需求实现】Tensorflow2的曲线拟合(三):Embedding层

文章目录 导读Embedding的维度问题Embedding的输入输出比较容易踩的坑input_shape与input_length的对应关系built属性 导读 这是填曲线拟合第一篇的坑&#xff0c;有关Embedding层的问题。 Embedding的维度问题 首先是上次我们提到的Embedding层&#xff0c;他确实能够做到将…

预约Oracle OCP认证考试的保姆式流程

Oracle OCP认证考试的预约流程涉及到Oracle的SLS培训记录&#xff0c;因此相当复杂。本文进行了详细地说明&#xff0c;每一步都有截图&#xff0c;有需要的同学建议收藏。 关于号主&#xff0c;姚远 Oracle ACE&#xff08;Oracle和MySQL数据库方向&#xff09;。Oracle MAA…

智能体重秤方案PCBA方案设计

智能体重秤是一款高精度、便捷、多功能的健康管理工具&#xff0c;旨在帮助用户监测和控制体重&#xff0c;达到健康管理与减肥的目的。该产品融合了先进的科技技术&#xff0c;结合了人体工程学设计&#xff0c;具有美观、易用的特点。以下将从结构、参数、原理和应用方面为大…

电涌(浪涌)保护器防雷保护级别

浪涌保护器实际就是压敏电阻&#xff0c;具有高通低阻的特性。当电网在不超过最大持续运行电压的情况下运行时&#xff0c;两个电极之间呈高阻状态。由于雷击的能量是非常巨大的&#xff0c;需要通过分级泄放的方法&#xff0c;将雷击能量逐步泄放到大地。 第一级防雷器可以对…

mmyolo框架实现在VOC数据集上复现Yolov6教程(详细)

写在开头&#xff0c;最近学习mmyolo的框架&#xff0c;想着它能将所有配置都写在一个config文件里&#xff0c;只需要改配置文件就可以改动模型&#xff0c;感觉挺方便的。 就想着Yolov6用mmyolo框架来实现,但mmyolo并没有提供v6的voc实现配置&#xff0c;v5是有的(看下图)&am…

软件测试技能,JMeter压力测试教程,取样器之测试活动(十八)

目录 前言 一、测试活动(Test Action) 二、Pause 设置暂停 三、Stop 停止 四、循环设置 五、跨线程组使用 前言 如果想在请求之后加等待时间如何做呢&#xff1f; 如果希望在 sampler 执行完之后再等待&#xff0c;则可使用取样器里面的测试活动 (Test Action) 一、测…

10个Salesforce集成项目最佳实践,助力成为专家!

随着企业越来越关注数据驱动的决策方法&#xff0c;集成多个系统成为了Salesforce 实施不可或缺的一部分。无论该项目是Salesforce的传统CRM迁移还是新的CRM实施&#xff0c;Salesforce CRM与ERP以及其他业务关键系统的集成都是需要考虑的重要策略。 集成项目的成功很大程度上…

Vue-pdf踩坑记录

最近在公司的一个项目中&#xff0c;需要在线预览PDF文件。基于vue-admin-electron的模板中开发。开发机系统为Windows&#xff0c;使用的框架为electron-vue。 坑1&#xff1a;在通过vue-router路由到含有vue-pdf组件的页面时报&#xff1a;“syntaxError: Unexpected token …

《移动互联网技术》 第十章 系统与通信: 掌握Android系统的分层架构设计思想和基于组件的设计模式

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…

玩转代码|三个惊艳的黑科技代码,每一行代码都有惊讶的效果

目录 显示忘记密码 解除网页限制 去除视频logo 今日优质代码推荐 实现效果 实现过程 1. 简单的 Html 和 CSS 2. 创建 canvas画布 3. 获取鼠标点击位置 4. 实现鼠标点击产生烟花的初级形态 5. 实现烟花散开 6. 实现拖尾效果以及随机颜色 7. 实现烟花重力下坠 8. 实…

深度学习模型训练的全流程

目标是使用Pytorch来完成CNN的训练和验证过程&#xff0c;CNN网络结构。需要完成的逻辑结构如下&#xff1a; 构造训练集和验证集&#xff1b; 每轮进行训练和验证&#xff0c;并根据最优验证集精度保存模型。 # 将自定义的Dataset封装成一个Batch Size大小的Tensor&#xf…

threejs后期处理

个人博客地址: https://cxx001.gitee.io 1. 如何使用Threejs的后期处理 后期处理就是在场景渲染完后&#xff0c;最后对场景显示效果调整的手段。 使用后期处理步骤&#xff1a; &#xff08;1&#xff09;创建THREE.EffectComposer对象。(效果组合器) &#xff08;2&#x…

指定某个时间,计算和当前时间间隔几天几时几分

dateDiff(startTime,endTime) {let t1 new Date(startTime).getTime()*1000; //开始时间 2023-06-29 10:00:00let t2 new Date(endTime).getTime()*1000; //结束时间 1688090400000000 2023-06-30 10:00:00 1688092230000000 2023-06-30 10:30:30let dateTime 1000 *…

小程序反编译

第一步&#xff1a;下载软件 根据把博客下载好三个软件 夜神模拟器 RE文件管理器 Node.js 第二步&#xff1a;打开模拟器中的 “微信” 第三步&#xff1a;点击要下载的小程序 并 记录当时的时间 方便一会查找pkg文件 第四步&#xff1a;打开文件资源管理器 第五步&#xff1a…

PyTorch的ONNX结合MNIST手写数字数据集的应用(.pth和.onnx的转换与onnx运行时)

在PyTorch以前的模型都是.pth格式&#xff0c;后面Meta跟微软一起做了一个.onnx的通用格式。这里对这两种格式文件&#xff0c;分别做一个介绍&#xff0c;依然使用MNIST数据集来做示例 1、CUDA下的pth文件 那pth文件里面是什么结构呢&#xff1f;其实在以前的文章就有介绍过…

0基础学习VR全景平台篇 第50篇:高级功能-自定义右键

本期为大家带来蛙色VR平台&#xff0c;高级功能—自定义右键功能操作。 功能位置示意 一、本功能将用在哪里&#xff1f; 自定义右键功能&#xff0c;观看者可通过电脑端右键和手机端长按屏幕&#xff0c;出现作者配置的自定义内容&#xff0c;使VR全景玩法变得多样化。 二、…

欧科云链2023年报:毛利达1.55亿港元,数字资产业务成最大增长点

据香港商报报道&#xff0c;2023年6月28日&#xff0c;欧科云链控股有限公司&#xff08;以下简称“欧科云链”&#xff09;及其附属公司&#xff08;股份代号&#xff1a;1499.HK&#xff0c;以下简称“集团”&#xff09;发布了截至2023年3月31日的年度报告。报告期内&#x…

工业读码器的选择和使用注意事项有哪些?

工业读码器是一种能够读取条形码、二维码等信息的设备&#xff0c;广泛应用于物流、生产制造、零售等行业。如何选择和使用工业读码器呢?下面是一些注意事项。 选择工业读码器 要根据应用场景选择合适的读码器类型&#xff0c;如手持式、固定式、手动旋转式等。 要考虑读取码的…