【STM32笔记】HAL库低功耗模式配置(ADC唤醒无法使用的解决方案)
理论转载:
leung-manwah.blog.csdn.net/article/details/114675725
一、低功耗模式简介
系统提供了多个低功耗模式,可在 CPU 不需要运行时(例如等待外部事件时)节省功耗。由用户根据应用选择具体的低功耗模式,以在低功耗、短启动时间和可用唤醒源之间寻求最佳平衡。
睡眠模式、停止模式及待机模式中,若备份域电源正常供电,备份域内的 RTC 都可以正常运行,备份域内的寄存器的数据会被保存,不受功耗模式影响。
从表中可以看到,这三种低功耗模式层层递进,运行的时钟或芯片功能越来越少,因而功耗越来越低。
模式 | 说明 | 进入方式 | 唤醒 | 对1.8V区域时钟的影响 | 对VDD区域时钟的影响 | 调压器 |
---|---|---|---|---|---|---|
睡眠模式 | 内核停止,所有外设包括M3核心的外设,如NVIC、系统时钟(SysTick)等仍在运行 | WFI、WFE命令(HAL库直接调用) | 任意中断/事件 | 内核时钟关,对其他时钟和ADC时钟无影响 | 无 | 开 |
– | – | – | – | – | – | |
停止模式 | 所有的时钟都已停止 | 配置PWR_CR寄存器的PDDS+LPDS位+SLEEPDEEP位+WFI或WFE命令 | 任意外部中断EXTI(在外部中断寄存器中设置) | 关闭所有1.8V区域的时钟 | HSI和HSE的振荡器关闭 | 开启或处于低功耗模式(依据电源控制寄存器的设定) |
– | – | – | – | – | – | |
待机模式 | 1.8V电源关闭 | 配置PWR_CR寄存器的PDDS+SLEEPDEEP位+WFI或WFE命令 | WKUP、引脚的RTC闹钟事件、NRST引脚上的外部复位、IWDG复位 | 关闭所有1.8V区域的时钟 | HSI和HSE的振荡器关闭 | 关 |
– | – | – | – | – | – |
1.1 睡眠模式
在睡眠模式中,仅关闭了内核时钟,内核停止运行,但其片上外设,CM3 核心的外设全都还照常运行。有两种方式进入睡眠模式,它的进入方式决定了从睡眠唤醒的方式,分别是 WFI(wait for interrupt) 和 WFE(wait for event),即由等待“中断”唤醒和由“事件”唤醒。
特性和说明:
立即睡眠: 在执行 WFI 或 WFE 指令时立即进入睡眠模式。
退出时睡眠: 在退出优先级最低的中断服务程序后才进入睡眠模式。
进入方式: 内核寄存器的 SLEEPDEEP=0 ,然后调用 WFI 或 WFE 指令即可进入睡眠模式;SLEEPONEXIT=1 时,进入“退出时睡眠”模式。
唤醒方式: 如果是使用 WFI 指令睡眠的,则可使用任意中断唤醒;如果是使用 WFE 指令睡眠的,则由事件唤醒。
睡眠时: 关闭内核时钟,内核停止,而外设正常运行,在软件上表现为不再执行新的代码。这个状态会保留睡眠前的内核寄存器、内存的数据。
唤醒延迟: 无延迟。
唤醒后: 若由中断唤醒,先进入中断,退出中断服务程序后,接着执行 WFI 指令后的程序;若由事件唤醒,直接接着执行 WFE 后的程序。
唤醒后即可开始行动 继续程序 无需配置任何寄存器
1.2 停止模式
在停止模式中,进一步关闭了其它所有的时钟,于是所有的外设都停止了工作,但由于其 1.8V 区域的部分电源没有关闭,还保留了内核的寄存器、内存的信息,所以从停止模式唤醒,并重新开启时钟后,还可以从上次停止处继续执行代码。停止模式可以由任意一个外部中断(EXTI)唤醒,在停止模式中可以选择电压调节器为开模式或低功耗模式。
特性和说明:
调压器低功耗模式: 在停止模式下调压器可工作在正常模式或低功耗模式,可进一步降低功耗。
进入方式: 内核寄存器的 SLEEPDEEP=1,PWR_CR 寄存器中的 PDDS=0,然后调用 WFI 或 WFE 指令即可进入停止模式;PWR_CR 寄存器的 LPDS=0 时,调压器工作在正常模式,LPDS=1 时工作在低功耗模式。
唤醒方式: 如果是使用 WFI 指令睡眠的,可使用任意 EXTI 线的中断唤醒;如果是使用 WFE 指令睡眠的,可使用任意配置为事件模式的 EXTI 线事件唤醒。
停止时: 内核停止,片上外设也停止。这个状态会保留停止前的内核寄存器、内存的数据。
唤醒延迟: 基础延迟为 HSI 振荡器的启动时间,若调压器工作在低功耗模式,还需要加上调压器从低功耗切换至正常模式下的时间。
唤醒后: 若由中断唤醒,先进入中断,退出中断服务程序后,接着执行 WFI 指令后的程序;若由事件唤醒,直接接着执行 WFE 后的程序。唤醒后,STM32 会使用 HSI 作为系统时钟。
只能由外部中断唤醒 唤醒后需要重新使能时钟(SystemClock_Config();)
建议将一条外部中断线专门作为唤醒中断,执行中断后进入回调进行时钟使能
1.3 待机模式
翻译成shutdown更为合适
待机模式,它除了关闭所有的时钟,还把 1.8V 区域的电源也完全关闭了,也就是说,从待机模式唤醒后,由于没有之前代码的运行记录,只能对芯片复位,重新检测 boot 条件,从头开始执行程序。它有四种唤醒方式,分别是 WKUP(PA0)引脚的上升沿,RTC 闹钟事件,NRST 引脚的复位和 IWDG(独立看门狗)复位。
特性和说明:
进入方式: 内核寄存器的 SLEEPDEEP=1,PWR_CR 寄存器中的 PDDS=1,PWR_CR 寄存器中的唤醒状态位 WUF=0,然后调用 WFI 或 WFE 指令即可进入待机模式。
唤醒方式: 通过 WKUP ,RTC 闹钟、唤醒、入侵、时间戳事件或 NRST 引脚外部复位及 IWDG 复位唤醒。
待机时: 内核停止,片上外设也停止;内核寄存器、内存的数据会丢失;除复位引脚、RTC_AF1 引脚及 WKUP 引脚,其它 I/O 口均工作在高阻态。
唤醒延迟: 芯片复位的时间。
唤醒后: 相当于芯片复位,在程序表现为从头开始执行代码。
代码实操
SYS配置:
选择Serial Wire模式可以在某些情况下进行调试如(SWD)
配置外部中断就不说了
进入低功耗模式的函数
引脚指定只对待机模式有效
HAL_PWR_EnableWakeUpPin(WakeUpPinPolarity);
该函数指定的引脚不受引脚其他的配置影响(比如已经被配成了复用)
/*!
* @brief 进入低功耗模式
*
* @param [in] mode_flag: 模式标志
* 0/大于3 不进入任何模式,1 进入睡眠,2 进入停止,3 进入待机
* [in] WakeUpPinPolarity: 待机模式下WKUP唤醒引脚极性配置,其他模式无用
*
* @return None
*/
void Enter_Low_PWR(uint8_t mode_flag,uint32_t WakeUpPinPolarity)
{
switch(mode_flag)
{
case 0:
{
printf("[INFO] 不进入低功耗模式\n");
break;
}
case 1:
{
printf("[INFO] 进入睡眠模式\n");
delay_ms(10); //消抖
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
HAL_PWR_EnterSLEEPMode(PWR_LOWPOWERREGULATOR_ON,PWR_SLEEPENTRY_WFI);
break;
}
case 2:
{
printf("[INFO] 进入停止模式\n");
delay_ms(10); //消抖
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON,PWR_SLEEPENTRY_WFI);
break;
}
case 3:
{
printf("[INFO] 三秒后进入待机模式\n");
delay_ms(3000);
printf("[INFO] 进入待机模式\n");
HAL_PWR_EnableWakeUpPin(WakeUpPinPolarity);
delay_ms(10); //消抖
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
HAL_PWR_EnterSTANDBYMode();
break;
}
default:
{
printf("[INFO] 不进入低功耗模式\n");
break;
}
}
}
外部中断回调(只对STOP模式有效果 SLEEP模式可以省略):
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
switch(GPIO_Pin)
{
case WAKE_UP_Pin:
{
SystemClock_Config();
}
default:
{
break;
}
}
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
}
ADC唤醒无法使用的解决方案
从STOP模式唤醒 会导致L4系列等MCU的ADC无法使用
原因就是PLLSAI时钟被关闭了 就算从头开始初始化也没用
所以只需要更换时钟源即可
省电优化
在CubeMX里面有一项设置,就是把没有用到的引脚全部设置为省电(模拟输入) 这样可以更省电