1. 准备数据集
数据集格式跟yolov5一样,关于如何准备数据集可见之前的文章。
2. 创建 mydata.yaml
格式参考coco128.yaml,主要是 train / validate文件的存放路径,可以是同一个。
在ultralytics-main/ultralytics/datasets中,有标准数据集的yaml文件。
coco128.yaml格式如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128.zip
3. 修改models , yolo8.yaml (这一步好像没有必要)
在models文件夹内,存放了v3-v8各个版本的模型配置文件。对目标模型文件进行修改,主要是对分类类别数量
如我的目标是4类,将nc设置为4
4. 官网下载预训练模型
如果是想先把流程走通的话,建议选择yolo8n.pt , V8系列里,最小的模型。
5. 训练
官方参考格式如下:
注意,如果从头开始训练,model = yolov8n.yaml ; 如果采用与训练的方式,model = yolov8n.pt
yolo task =detect mode=train model=yolov8n.pt data=mydata.yaml epochs=200
关于命令行,yolo 后可以跟哪些参数,可参考yolo/cfg/default.yaml
6. predict
参考
https://github.com/ultralytics/ultralytics
https://docs.ultralytics.com/usage/cli/#val