一、什么是人工智能
人工智能不是最近几年才兴起的,它已经有几十年发展的历史,下面是业内公认的一种关于人工智能概念的定义:人工智能(Artificial Intelligence):缩写为AI,是研究开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
这里边我们强调四个关键词:“模拟”“延伸”“扩展”“人的智能”,关于人工智能,在不同的视角下,是有不同的观点的,但是回归到人工智能的本质,是模拟、延伸和扩展人的智能,就比较容易理解人工智能是什么概念。
该领域的研究包括交互机器人、自然语言处理、语音识别、计算机视觉(图像识别)、知识表示、专家系统等。
二、人工智能、机器学习和深度学习的关系
人工智能(Artificial Intelligence)涵盖范围最广,三环以内都可以叫人工智能,它关注的问题和方法也最杂,包括知识推理、逻辑规划以及机器人等方面。
机器学习(Machine Learning)住在二环,是人工智能的核心区域,也是当前发展最迅猛的一部分,子算法流派枝繁叶茂,但思想比较统一。
至于当下的网红——深度学习(Deep Learning),其实原本是从机器学习的神经网络子算法分支发展出来的一系列成果,知识体系一脉相承,只不过近年大出风头,干脆重新起了个名字“单飞”了。
人工智能
人工智能的目的是让计算机模拟人类的思维,让它解决一些不能用代码描述的问题,比如判断一朵花是不是玫瑰、通过 CT 照片检测一个人的病情等,这些问题就不能用传统的编程方法解决,因为没有一个确定的公式,或者说没有一个确定的算法。
但是我们人类就很容易解决这些问题,人类大脑不是根据固定的算法来推导的,而是根据以往的认知或者经验来推理。人工智能的目的也是如此,就是不给计算机编写固定的算法,让计算机根据已有的经验或者认知来帮助人们做事情。计算机的思维方式和人类相似,所以称为人工智能。
机器学习
人工智能是一个很美好的憧憬,那么,如何才能实现人工智能呢?答案就是让计算机不断地学习,也就是喂给它大量的数据,让它从数据中积累经验,逐渐形成认知。这就是机器学习。
人工智能是最终目标,机器学习是实现目标的一种方案。
机器学习是一件很麻烦的事情,需要先搭建一个模型,这个模型包含了很多参数,然后把准备好的数据(包括正确的结果)输入到模型中,不断调整模型的参数,直到它非常接近或者完全符合正确的结果,这个时候我们就说模型训练好了。
机器学习的模型有很多种,已经有人帮我们开发好了,我们从中选择其一即可,这个不用担心。最要命的是数据,机器学习需要大量的数据才能训练好模型。人类看一两张猫的照片就认识猫了,但是机器学习需要看成千上万张照片。
如何收集大量有效的数据,是机器学习的重中之重,所以才有了爬虫,有了数据挖掘,有了数据清洗等分支。
深度学习
机器学习的模型是一个不断发展的过程,后来人们逐渐研究出了一种更加智能和通用的模型,就是卷积神经网络(CNN)。CNN 模拟人类大脑神经突触之间的连接,通过调整参数来模拟突触连接的强弱。
三、人工智能的两大主要特征:自动化+智能化
想象一下,你和一个机器人谈天说地的场景,是不是有点科幻?但现在,这种情况已经不再遥远了。最近,一家人工智能公司推出了一款名为“AI对话”机器人,可以和用户进行人机交互,让我们一起来看看吧!
这款“AI对话”机器人有两个主要特征:自动化和智能化。首先,它采用了自动化技术,可以根据用户的输入自动产生回复,无需人工干预。其次,它还拥有强大的智能化能力,能够理解用户的意图,回答问题,甚至可以进行情感分析,与用户进行更加深入的互动。
除此之外,“AI对话”机器人还有很多惊人的特点。它可以随时学习新的知识,不断提升自己的智能水平;它还可以进行语音识别和合成,实现真正的人机对话。不过,同时也存在一些问题,比如隐私保护和道德问题,需要引起重视。
四、人工智能的发展简史
- 1950年,计算机之父、人工智能之父阿兰·图灵提出图灵测试
- 1956年,斯坦福大学AI实验室创办人约翰·麦肯锡第一次提出AI的概念。前面的所讲到的人工智能的概念,就是1956年由约翰·麦肯锡提出的。
- 1986年,Rumelhart等人提出分布式并行处理,人工智能的发展离不开分布式计算。
- 2006年,Geoffrey.E Hinton &Lecunetc提出深度学习概念
- 2011年,IBM开发Waston认知系统,人脑生物芯片开创者
- 2016年,Google AlphaGo战胜了世界围棋冠军、职业九段选手李世石
- 2017年,百度宣布开放自动驾驶平台Apollo
- 2018年,DeepMind的Alphafold破解了出现五十年之久的蛋白质分子折叠问题,谷歌推出BERT模型,将自然语言处理技术推进到新的时代。
- 2022年,chatGPT
五、人工智能市场生态格局