Kafka(四)- Kafka 生产者

news2024/11/26 13:54:35

文章目录

  • 一、生产者消息发送流程
    • 1. 发送流程
    • 2. 生产者重要参数列表
  • 二、异步发送 API
    • 1. 普通异步发送
    • 2. 带回调函数的异步发送
    • 3. 同步发送
  • 三、生产者分区
    • 1. 分区好处
    • 2. 生产者发送消息的分区策略
      • (1)默认的分区器 DefaultPartitioner
      • (2)案例一:将数据发往指定的 partition
      • (3)案例二:没有指明 partition 值,但有 key 的情况
    • 3. 自定义分区器

一、生产者消息发送流程

1. 发送流程

在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。

在这里插入图片描述

2. 生产者重要参数列表

参数名称描述
bootstrap.servers生产者连接集群所需的broker地址清单 。 例如:hadoop102:9092,hadoop103:9092,hadoop104:9092,可以设置1个或者多个,中间用逗号隔开。注意这里并非需要所有的broker地址,因为生产者可以从给定的broker里可以查找到其他broker信息。
key.serializer 和 value.serializer指定发送消息的 key 和 value 的序列化类型。一定要写全类名。
buffer.memoryRecordAccumulator 缓冲区总大小,默认 32m。
batch.size缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。
linger.ms如果数据迟迟未达到batch.size,sender 等待 linger.time之后就会发送数据。单位ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间。
acks0:生产者发送过来的数据,不需要等数据落盘应答。1:生产者发送过来的数据,Leader 收到数据后应答。-1(all):生产者发送过来的数据,Leader和 isr 队列里面的所有节点收齐数据后应答。默认值是-1,-1 和all 是等价的。
max.in.flight.requests.per.connection允许最多没有返回 ack 的次数,默认为 5,开启幂等性要保证该值是 1-5 的数字。
retries当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是 int 最大值,2147483647。如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。
retry.backoff.ms两次重试之间的时间间隔,默认是 100ms。
enable.idempotence是否开启幂等性,默认 true,开启幂等性。
compression.type生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。支持压缩类型:none、gzip、snappy、lz4 和 zstd。

二、异步发送 API

1. 普通异步发送

1.需求:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker
2.代码编写

(1)导入依赖

<dependencies>
	 <dependency>
		 <groupId>org.apache.kafka</groupId>
		 <artifactId>kafka-clients</artifactId>
		 <version>3.0.0</version>
	 </dependency>
</dependencies>

(2)编写不带回调函数的 API 代码

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class producer {
    public static void main(String[] args) {
        // 1. 创建 kafka 生产者的配置对象
        Properties properties = new Properties();
        // 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
        // key,value 序列化(必须):key.serializer,value.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        // 3. 创建 kafka 生产者对象
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
        // 4. 调用 send 方法,发送消息
        for (int i = 0; i < 5; i++) {    
            kafkaProducer.send(new ProducerRecord<>("first","kafka" + i));
        }
        // 5. 关闭资源
        kafkaProducer.close();
    }
}

3.测试:
(1)在 hadoop102 上开启 Kafka 消费者。
[root@hadoop102 kafka_2.12-3.0.0]# bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
(2)在 IDEA 中执行代码,观察 hadoop102 控制台中接收的消息。
kafka0
kafka1
kafka2
kafka3
kafka4

2. 带回调函数的异步发送

回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;
public class CustomProducerCallback {

    public static void main(String[] args) throws InterruptedException {
        // 1. 创建 kafka 生产者的配置对象
        Properties properties = new Properties();
        // 2. 给 kafka 配置对象添加配置信息
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
        // key,value 序列化(必须):key.serializer,value.serializer
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        // 3. 创建 kafka 生产者对象
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
        // 4. 调用 send 方法,发送消息
        for (int i = 0; i < 5; i++) {
            // 添加回调
            kafkaProducer.send(new ProducerRecord<>("first", "kafka" + i), new Callback() {// 该方法在 Producer 收到 ack 时调用,为异步调用
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (exception == null) {
                        // 没有异常,输出信息到控制台
                        System.out.println(" 主题: " + metadata.topic() + "->" + "分区:" + metadata.partition());
                    } else {
                        // 出现异常打印
                        exception.printStackTrace();
                    }
                }
            });
            // 延迟一会看到数据发往不同分区
            Thread.sleep(2);
        }
        // 5. 关闭资源
        kafkaProducer.close();
    }
}
1.观察 hadoop102 控制台中接收的消息。
kafka0
kafka1
kafka2
kafka3
kafka4
2.IDEA 控制台观察回调信息。
 主题: first->分区:0
 主题: first->分区:0
 主题: first->分区:0
 主题: first->分区:1
 主题: first->分区:1

3. 同步发送

只需在异步发送的基础上,再调用一下 get()方法即可。
kafkaProducer.send(new ProducerRecord<>("first","kafka" + i)).get();

三、生产者分区

1. 分区好处

(1)便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。
(2)提高并行度,生产者以分区为单位发送数据;消费者以分区为单位进行消费数据。

在这里插入图片描述

2. 生产者发送消息的分区策略

(1)默认的分区器 DefaultPartitioner

  • DefaultPartitioner 源码注释:
/*The default partitioning strategy:(默认的分区策略:)
If a partition is specified in the record, use it(如果记录中指定了分区,则使用它)
If no partition is specified but a key is present choose a partition based on a hash of the key(如果没有指定分区但有一个key,则根据key的散列选择一个分区)
If no partition or key is present choose the sticky partition that changes when the batch is full. (如果不存在分区或key,则选择在批处理满时更改的粘性分区。)
See KIP-480 for details about sticky partitioning.(有关粘性分区的详细信息,请参见KIP-480。)
*/
public class DefaultPartitioner implements Partitioner {
	
}
  • ProducerRecord 构造方法
//(1)指明partition的情况下,直接将指明的值作为partition值;例如:partition=0,所有数据写入分区0。
public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value, Iterable<Header> headers) {}
public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value){}
public ProducerRecord(String topic, Integer partition, K key, V value, Iterable<Header> headers) {}
public ProducerRecord(String topic, Integer partition, K key, V value) {}
//(2)没有指明partition值但有key的情况下,将key的hash值与topic的partition总数进行取余得到partition值;例如:key1的hash值=5, key2的hash值=6 ,topic的partition总数=2,那么key1 对应的value1写入1号分区,key2对应的value2写入0号分区。
public ProducerRecord(String topic, K key, V value) {}
//(3)既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器),会随机选择一个分区,并尽可能一直使用该分区,待该分区的batch已满或者已完成,Kafka再随机一个分区进行使用(和上一次的分区不同)。例如:第一次随机选择0号分区,等0号分区当前批次满了(默认16k)或者linger.ms设置的时间到,Kafka再随机一个分区进行使用(如果还是0会继续随机)。
public ProducerRecord(String topic, V value) {}

(2)案例一:将数据发往指定的 partition

将数据发往指定 partition 的情况下,例如:将所有数据发往分区 1 中。

public class CustomProducerCallbackPartitions {

    public static void main(String[] args) throws InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        
        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
        	// 指定数据发送到 1 号分区,key 为空(IDEA 中 ctrl + p 查看参数)
            kafkaProducer.send(new ProducerRecord<>("first", 1, "", "hello " + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (exception == null) {
                        System.out.println("主题: " + metadata.topic() + "->分区:" + metadata.partition());
                    }
                }
            });

            Thread.sleep(2);
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
  • 测试:

①在 hadoop102 上开启 Kafka 消费者。

[root@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中接收的消息。

[root@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
hello 0
hello 1
hello 2
hello 3
hello 4

③在 IDEA 控制台观察回调信息。

主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

(3)案例二:没有指明 partition 值,但有 key 的情况

没有指明 partition 值,但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 总数进行取余得到 partition 值。

public class CustomProducerCallback {

    public static void main(String[] args) throws InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 500; i++) {
            // 依次指定 key 值为 a,b,f ,数据 key 的 hash 值与 3 个分区求余,分别发往 1、2、0
            kafkaProducer.send(new ProducerRecord<>("first", "a", "hello " + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (exception == null){
                        System.out.println("主题: "+metadata.topic() + "->分区:"+ metadata.partition());
                    }
                }
            });

            Thread.sleep(2);
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
  • 测试:

①key="a"时,在控制台查看结果。

主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

②key="b"时,在控制台查看结果。

主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2

③key="f"时,在控制台查看结果。

主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0

3. 自定义分区器

如果研发人员可以根据企业需求,自己重新实现分区器。

  1. 需求
    实现一个分区器实现,发送过来的数据中如果包含 hello,就发往 0 号分区,不包含 hello,就发往 1 号分区。
  2. 实现步骤
    (1)定义类实现 Partitioner 接口。
    (2)重写 partition()方法。
    (3)使用分区器的方法,在生产者的配置中添加分区器参数。
/**
 * 1. 实现接口 Partitioner
 * 2. 实现 3 个方法:partition,close,configure
 * 3. 编写 partition 方法,返回分区号
 */
public class MyPartitioner implements Partitioner {
    /**
     * 返回信息对应的分区
     * @param topic 主题
     * @param key 消息的 key
     * @param keyBytes 消息的 key 序列化后的字节数组
     * @param value 消息的 value
     * @param valueBytes 消息的 value 序列化后的字节数组
     * @param cluster 集群元数据可以查看分区信息
     * @return
     */
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {

        // 获取数据 hello
        String msgValues = value.toString();

        // 创建 partition
        int partition;

        // 判断消息是否包含 hello
        if (msgValues.contains("hello")){
            partition = 0;
        }else {
            partition = 1;
        }

        // 返回分区号
        return partition;
    }

    // 关闭资源
    @Override
    public void close() {

    }

    // 配置方法
    @Override
    public void configure(Map<String, ?> configs) {

    }
}
  • 使用分区器的方法,在生产者的配置中添加分区器参数。
public class CustomProducerCallbackPartitions {

    public static void main(String[] args) throws InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

        // 关联自定义分区器
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "com.atguigu.kafka.producer.MyPartitioner");

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
            // 指定数据发送到 1 号分区,key 为空(IDEA 中 ctrl + p 查看参数)
            kafkaProducer.send(new ProducerRecord<>("first", 1, "", "hello " + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (exception == null) {
                        System.out.println("主题: " + metadata.topic() + "->分区: " + metadata.partition());
                    }
                }
            });

            Thread.sleep(2);
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
  • 测试:

①在 hadoop102 上开启 Kafka 消费者。

[root@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

②在 IDEA 控制台观察回调信息。

主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/68249.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

行业沙龙第四期丨企业供应链协同的数字化解痛之道

当前&#xff0c;数字经济正在蓬勃发展&#xff0c;我们正在迈向一个协同一体的全球化时代。所谓协同&#xff0c;协者&#xff0c;众和之同也&#xff0c;多方能够协作才能达到一个共同的目标。其中&#xff0c;数据是实现协同的基本要素&#xff0c;技术是实现协同重要途径&a…

网络安全 核心基础篇总结

目录 前言 网络安全三大要素 CIA含义 1. Confidentiality&#xff08;机密性&#xff09; 1.1 机密性主要三个解决方法 1.1.1 加密 1.1.2 权限管理 1.1.3 敏感信息暴露 2. Integrity&#xff08;完整性&#xff09; 3. Availabitity&#xff08;可用性&#xff09; 威胁…

基于51单片机水塔水箱液水位WIFI监控报警设计proteus仿真原理图PCB

功能&#xff1a; 0.本项目采用STC89C52作为单片机系统的控制MCU 1.WIFI实时上传当前水位状态 2.通过液位传感器检测液位&#xff0c;检测到最低液位和最高液位时&#xff0c;超过设定阈值将声光报警 3.通过状态指示灯显示当前液位情况&#xff0c;三种颜色&#xff0c;红色代表…

快来给你的宠物视频加个表情特效吧

摘要&#xff1a;我们将给猫贴一张卡通脸&#xff0c;给 Elon Musk 贴上小胡子&#xff0c;给小狗贴上驯鹿角&#xff01;本文分享自华为云社区《视频AI&#xff0c;给你的宠物加个表情特效&#xff01;》&#xff0c;作者&#xff1a;HWCloudAI。 GAN 监督学习是一种联合端到…

Android适配【入坑指南+解决痛点】

Android适配是一个大坑&#xff0c;你可能早有耳闻。适配问题到底有多坑&#xff1f;为什么坑&#xff1f;以及如何从坑里爬出来&#xff1f; 概述 Android屏幕尺寸各异&#xff0c;而我们不可能根据各种尺寸都设计一套原型图去匹配&#xff0c;我们需要利用适配这一个过程把…

冷热电气多能互补的微能源网鲁棒优化调度附Matlab代码

✅作者简介&#xff1a;热爱科研的Matlab仿真开发者&#xff0c;修心和技术同步精进&#xff0c;matlab项目合作可私信。 &#x1f34e;个人主页&#xff1a;Matlab科研工作室 &#x1f34a;个人信条&#xff1a;格物致知。 更多Matlab仿真内容点击&#x1f447; 智能优化算法 …

基于Session的认证与授权实践

Spring Security系列文章 认证与授权之Cookie、Session、Token、JWT基于Session的认证与授权实践 基于Session的认证方式 基于 session 的认证方式如下图&#xff1a; 基于 Session 的认证机制由 Servlet 规范定制&#xff0c;Servlet 容器已实现&#xff0c;用户通过 HttpSes…

Matplotlib入门[05]——注释与标签

Matplotlib入门[05]——注释与标签 参考&#xff1a; https://ailearning.apachecn.org/ Matplotlib官网 plt.legend参数 使用Jupyter进行练习 注释 使用文本框进行注释 import numpy.random import matplotlib.pyplot as pltfig plt.figure(1, figsize(5,5)) # plt.clf…

ag-Grid Enterprise v28.2.1 企业版注册版

世界上最好的 JavaScript 网格 ag-Grid Enterprise v28.2.1 功能丰富 ag-Grid Enterprise v28.2.1 的性能、功能集和质量在 JavaScript 数据网格中前所未见。AG Grid 中的许多功能都是 AG Grid 独有的&#xff0c;并且只是将 AG Grid 归为一类&#xff0c;而不会影响质量或性能…

(详解错误情况,及解决方法)Vue 数据更新了但页面没有更新的情况

点个关注&#xff0c;赞一下栓Q 背景 在vue项目中&#xff0c;有些我们会遇到修改完数据&#xff0c;但是视图却没有更新的情况。具体的场景不一样&#xff0c;解决问题的方法也不一样。在网上看了很多文章&#xff0c;在此总结汇总一下。针对&#xff0c;数据更新视图没有更…

你知道哪些常用快捷键?电脑快捷键大全,打工人必备!

所谓的电脑快捷键&#xff0c;就是利用电脑键盘上的一个或几个按键组合完成一个功能命令&#xff0c;从而提高电脑的操作速度&#xff0c;带给我们更便捷的操作方式。电脑常用的快捷键是什么&#xff1f;以下是一些常用电脑快捷键的使用和功能的简要介绍。希望电脑快捷键大全能…

演讲实录 | OpenMLDB 整合自动特征工程

本文整理自 OpenMLDB 社区开发者、伊利诺伊大学 徐鹏程 在 OpenMLDB Meetup No.7 中的分享——《OpenMLDB 整合自动特征工程》。 大家好&#xff0c;我是来自伊利诺伊大学的硕士在读学生&#xff0c;也是 OpenMLDB 开源社区的贡献者——徐鹏程。我参与开发的项目&#xff0c;也…

RabbitMQ——RabbitMQ的六种工作模式详解

RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用来通过普通协议在完全不同的应用之间共享数据&#xff0c;RabbitMQ是使用Erlang(高并发语言)语言来编写的&#xff0c;并且RabbitMQ是基于AMQP协议的 AMQP协议 Advanced Message Queuing Protocol&#xff08;高级消…

JVM之垃圾回收器一

如何判断对象是否存活 引用计数器 给对象中添加一个引用计数器&#xff0c;每当有一个地方引用它时&#xff0c;计数器值就加1&#xff1b;当引用失效时&#xff0c;计数器值就减1&#xff1b;任何时刻计数器都为0的对象就是不可能再被使用的。 Java语言中没有选用引用计数算法…

对比分析小游戏引擎孰优孰劣

随着微信生态中&#xff0c;小程序应用指数级的增长&#xff0c;许多休闲游戏变成为了众多游戏厂商流量变现的新手段。以近期很火的“羊了个羊”为例&#xff0c;它便是我们常常所说的小游戏。 游戏和小游戏的区别 要盘点小游戏开发引擎之前&#xff0c;我们得先来了解下游戏…

leetcode 638. 大礼包-思路整理

题目 在 LeetCode 商店中&#xff0c; 有n件在售的物品。每件物品都有对应的价格。然而&#xff0c;也有一些大礼包&#xff0c;每个大礼包以优惠的价格捆绑销售一组物品。 给你一个整数数组price表示物品价格&#xff0c;其中price[i]是第i件物品的价格。另有一个整数数组nee…

扩散模型(Diffusion)最新综述+GitHub论文汇总-A Survey On Generative Diffusion

扩散模型(Diffusion Model)最新综述GitHub论文汇总-A Survey On Generative Diffusion 本综述来自香港中文大学Pheng-Ann Heng、西湖大学李子青实验室和浙江大学陈广勇团队&#xff0c;对现有的扩散生成模型进行了全面的回顾。本文首先提出了diffusion model改进算法的细化分类…

Thread类及常见方法

文章目录一、Thread常见构造方法二、Thread常见属性三、Thread常见方法start()获取当前线程休眠当前线程中断线程join()一、Thread常见构造方法 Thread类是JVM用来管理线程的一个类&#xff0c;每个线程都有唯一一个Thread对象与之对应&#xff0c;JVM会将这些对象组织起来&am…

世界杯征文活动 | 神奇!一段JavaScript代码生成会动的足球

世界杯征文活动 | 神奇&#xff01;一段JavaScript代码生成会动的足球 文章目录前言一、效果展示二、代码解析1.把足球图片转换为base64格式2.根据base64格式的字符串&#xff0c;创建img标签图片对象3.创建存放图片img的div标签对象4.使div旋转起来总结前言 花有重开日&#…

python中的import详解

0. 什么是导入&#xff1f; 导入从本质上讲&#xff0c;就是载入另一个文件&#xff0c;并能够读取那个文件的内容 0.1 模块和属性 模块往往就是变量名的封装&#xff0c;被认作是命名空间属性就是绑定在特定对象上的变量名 0.2 from和import 通过import得到了具有属性的模…