yolo格式visdrone转换

news2024/11/15 20:03:59

目录

  • yolo格式转换
    • 1. Visdrone2019格式转换

yolo格式转换

1. Visdrone2019格式转换

数据集下载地址https://aistudio.baidu.com/aistudio/datasetdetail/115729

如果是visdrone数据集,直接使用txt2xml.py去转换,修改annotation和img的路径,运行即可,运行后会在新建的xml文件夹下生成6471个xml文件,我们把xml文件转换为json,json再转成yolo

"""
该脚本用于visdrone数据处理;
将annatations文件夹中的txt标签文件转换为XML文件;
txt标签内容为:
<bbox_left>,<bbox_top>,<bbox_width>,<bbox_height>,<score>,<object_category>,<truncation>,<occlusion>
类别:
ignored regions(0), pedestrian(1),
people(2), bicycle(3), car(4), van(5),
truck(6), tricycle(7), awning-tricycle(8),
bus(9), motor(10), others(11)
"""
#visdrone转为yolo格式
import os
import cv2
import time
from xml.dom import minidom

name_dict = {'0': 'ignored regions', '1': 'pedestrian', '2': 'people',
             '3': 'bicycle', '4': 'car', '5': 'van', '6': 'truck',
             '7': 'tricycle', '8': 'awning-tricycle', '9': 'bus',
             '10': 'motor', '11': 'others'}


def transfer_to_xml(pic, txt, file_name):
    xml_save_path = 'xml'  # 生成的xml文件存储的文件夹
    if not os.path.exists(xml_save_path):
        os.mkdir(xml_save_path)

    img = cv2.imread(pic)
    img_w = img.shape[1]
    img_h = img.shape[0]
    img_d = img.shape[2]
    doc = minidom.Document()

    annotation = doc.createElement("annotation")
    doc.appendChild(annotation)
    folder = doc.createElement('folder')
    folder.appendChild(doc.createTextNode('visdrone'))
    annotation.appendChild(folder)

    filename = doc.createElement('filename')
    filename.appendChild(doc.createTextNode(file_name))
    annotation.appendChild(filename)

    source = doc.createElement('source')
    database = doc.createElement('database')
    database.appendChild(doc.createTextNode("Unknown"))
    source.appendChild(database)

    annotation.appendChild(source)

    size = doc.createElement('size')
    width = doc.createElement('width')
    width.appendChild(doc.createTextNode(str(img_w)))
    size.appendChild(width)
    height = doc.createElement('height')
    height.appendChild(doc.createTextNode(str(img_h)))
    size.appendChild(height)
    depth = doc.createElement('depth')
    depth.appendChild(doc.createTextNode(str(img_d)))
    size.appendChild(depth)
    annotation.appendChild(size)

    segmented = doc.createElement('segmented')
    segmented.appendChild(doc.createTextNode("0"))
    annotation.appendChild(segmented)

    with open(txt, 'r') as f:
        lines = [f.readlines()]
        for line in lines:
            for boxes in line:
                box = boxes.strip('\n')
                box = box.split(',')
                x_min = box[0]
                y_min = box[1]
                x_max = int(box[0]) + int(box[2])
                y_max = int(box[1]) + int(box[3])
                object_name = name_dict[box[5]]

                # if object_name is 'ignored regions' or 'others':
                #     continue

                object = doc.createElement('object')
                nm = doc.createElement('name')
                nm.appendChild(doc.createTextNode(object_name))
                object.appendChild(nm)
                pose = doc.createElement('pose')
                pose.appendChild(doc.createTextNode("Unspecified"))
                object.appendChild(pose)
                truncated = doc.createElement('truncated')
                truncated.appendChild(doc.createTextNode("1"))
                object.appendChild(truncated)
                difficult = doc.createElement('difficult')
                difficult.appendChild(doc.createTextNode("0"))
                object.appendChild(difficult)
                bndbox = doc.createElement('bndbox')
                xmin = doc.createElement('xmin')
                xmin.appendChild(doc.createTextNode(x_min))
                bndbox.appendChild(xmin)
                ymin = doc.createElement('ymin')
                ymin.appendChild(doc.createTextNode(y_min))
                bndbox.appendChild(ymin)
                xmax = doc.createElement('xmax')
                xmax.appendChild(doc.createTextNode(str(x_max)))
                bndbox.appendChild(xmax)
                ymax = doc.createElement('ymax')
                ymax.appendChild(doc.createTextNode(str(y_max)))
                bndbox.appendChild(ymax)
                object.appendChild(bndbox)
                annotation.appendChild(object)
                with open(os.path.join(xml_save_path, file_name + '.xml'), 'w') as x:
                    x.write(doc.toprettyxml())
                x.close()
    f.close()


if __name__ == '__main__':
    t = time.time()
    print('Transfer .txt to .xml...ing....')
    txt_folder = 'E:\\YoloImg\\VisDrone2019-DET-train (1)\\VisDrone2019-DET-train\\annotations'  # visdrone txt标签文件夹
    txt_file = os.listdir(txt_folder)
    img_folder = 'E:\\YoloImg\\VisDrone2019-DET-train (1)\\VisDrone2019-DET-train\\images'  # visdrone 照片所在文件夹
    count = 0
    for txt in txt_file:
        txt_full_path = os.path.join(txt_folder, txt)
        img_full_path = os.path.join(img_folder, txt.split('.')[0] + '.jpg')
        count = count + 1
        print('txt to xml succeed:{}', count)
        try:
            transfer_to_xml(img_full_path, txt_full_path, txt.split('.')[0])
        except Exception as e:
            print(e)

    print("Transfer .txt to .XML sucessed. costed: {:.3f}s...".format(time.time() - t))


import json
import os
import xml.etree.ElementTree as ET

# 这个文件可以把input_folder下的文件夹的xml文件全部转换成coco类型,并且输出到output_folder文件夹下
# 如果input_folder下的xml有多个类别,都可以挑出来

# 修改输入和输出文件夹的路径
input_folder = "刚刚转换好的xml文件夹的路径"
output_folder = "自己要保存的新路径"
# 列出输入文件夹中的所有文件
files = os.listdir(input_folder)

# 遍历所有文件并检查扩展名以仅处理 XML 文件
for file in files:
    if file.endswith(".xml"):
        # 读取原始标注 XML 文件
        with open(os.path.join(input_folder, file), "r") as f:
            xml_data = f.read()

        # 解析 XML 数据
        root = ET.fromstring(xml_data)

        # 获取图像路径
#        path = root.find("path").text

        # 获取图像尺寸
        width = int(root.find("size/width").text)
        height = int(root.find("size/height").text)

        if width == 0 or height == 0:
            print(f"Invalid width or height in file: {file}")
            continue

        # 获取目标位置
        objects = root.findall("object")
        shapes = []

        for obj in objects:
            xmin = int(obj.find("bndbox/xmin").text)
            #xmin = int(float(obj.find("bndbox/xmin").text))
            ymin = int(obj.find("bndbox/ymin").text)
            #ymin = int(float(obj.find("bndbox/ymin").text))
            xmax = int(obj.find("bndbox/xmax").text)
            #xmax = int(float(obj.find("bndbox/xmax").text))
            ymax = int(obj.find("bndbox/ymax").text)
            #ymax = int(float(obj.find("bndbox/ymax").text))

            # 转换目标位置坐标为 COCO 格式
            x_center = (xmin + xmax) / 2
            y_center = (ymin + ymax) / 2
            bbox_width = (xmax - xmin)
            bbox_height = (ymax - ymin)

            # 读取目标标签
            label = obj.find("name").text

            # 生成 COCO 格式的 JSON
            shape = {
                "label": label,
                "points": [
                    [x_center - bbox_width / 2, y_center - bbox_height / 2],
                    [x_center + bbox_width / 2, y_center + bbox_height / 2],
                ],
                "group_id": None,
                "shape_type": "rectangle",
                "flags": {}
            }
            shapes.append(shape)

        # 生成最终的 COCO 格式的 JSON 数据
        coco_data = {
            "version": "5.1.1",
            "flags": {},
            "imagePath": None,
            "imageData": None,
            "imageHeight": height,
            "imageWidth": width,
            "shapes": shapes
        }

        # 创建唯一的输出文件名
        output_file = os.path.splitext(file)[0] + ".json"

        # 将数据保存为 JSON 文件
        with open(os.path.join(output_folder, output_file), "w") as f:
            json.dump(coco_data, f, indent=4)

import os
import json
import random
import shutil

# json转成yolo格式,划分的时候把json和img全部放入input_dir里面
# 先用xml转json,再用json转为yolo格式
# 定义你的类别列表
classes = [
    'ignored regions',
    'pedestrian',
    'people',
    'bicycle',
    'car',
    'van',
    'truck',
    'tricycle',
    'awning-tricycle',
    'bus',
    'motor',
    'others'
]  # 更新为你的类别


def convert_annotation(input_dir, output_dir, json_file):
    with open(os.path.join(input_dir, json_file), 'r') as in_file:
        data = json.load(in_file)

    out_file = open(os.path.join(output_dir, json_file.replace('.json', '.txt')), 'w')

    img_width = data['imageWidth']
    img_height = data['imageHeight']

    for obj in data['shapes']:
        cls = obj['label']
        if cls not in classes:
            continue

        cls_id = classes.index(cls)
        points = obj['points']
        x_center = (points[0][0] + points[1][0]) / 2.0 / img_width
        y_center = (points[0][1] + points[1][1]) / 2.0 / img_height
        width = (points[1][0] - points[0][0]) / img_width
        height = (points[1][1] - points[0][1]) / img_height

        out_file.write(f"{cls_id} {x_center} {y_center} {width} {height}\n")


def convert_all(input_dir, output_dir):
    json_files = [f for f in os.listdir(input_dir) if f.endswith('.json')]
    random.shuffle(json_files)

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    train_output_dir = os.path.join(output_dir, 'train')
    val_output_dir = os.path.join(output_dir, 'val')
    train_images_dir = os.path.join(output_dir, 'images', 'train')
    val_images_dir = os.path.join(output_dir, 'images', 'val')

    if not os.path.exists(train_output_dir):
        os.makedirs(train_output_dir)

    if not os.path.exists(val_output_dir):
        os.makedirs(val_output_dir)

    if not os.path.exists(train_images_dir):
        os.makedirs(train_images_dir)

    if not os.path.exists(val_images_dir):
        os.makedirs(val_images_dir)

    train_split = int(len(json_files) * 0.9)
    train_json_files = json_files[:train_split]
    val_json_files = json_files[train_split:]

    for json_file in train_json_files:
        shutil.copy(os.path.join(input_dir, json_file), train_output_dir)
        convert_annotation(input_dir, train_output_dir, json_file)
        if os.path.exists(os.path.join(input_dir, json_file.replace('.json', '.jpg'))):
            shutil.copy(os.path.join(input_dir, json_file.replace('.json', '.jpg')), train_images_dir)
        elif os.path.exists(os.path.join(input_dir, json_file.replace('.json', '.png'))):
            shutil.copy(os.path.join(input_dir, json_file.replace('.json', '.png')), train_images_dir)

    for json_file in val_json_files:
        shutil.copy(os.path.join(input_dir, json_file), val_output_dir)
        convert_annotation(input_dir, val_output_dir, json_file)
        if os.path.exists(os.path.join(input_dir, json_file.replace('.json', '.jpg'))):
            shutil.copy(os.path.join(input_dir, json_file.replace('.json', '.jpg')), val_images_dir)
        elif os.path.exists(os.path.join(input_dir, json_file.replace('.json', '.png'))):
            shutil.copy(os.path.join(input_dir, json_file.replace('.json', '.png')), val_images_dir)

    with open(os.path.join(output_dir, 'classes.txt'), 'w') as f:
        for cls in classes:
            f.write(cls + '\n')


if __name__ == "__main__":
    input_dir = 'D:\\Open-mmLab\\yolov5-master\\classify\\my_xml'
    output_dir = 'D:\\Open-mmLab\\yolov5-master\\classify\\my_new_xml'
    convert_all(input_dir, output_dir)

转换的时候,图片和json要在一个文件夹下,代码才会分开,不然会没有图片,完成之后就是标准的格式了,可以训练了,运行完后如下,把val和train里面json文件全部删除即可
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

注意:json文件的imagePath路径是图片的路径

import os
import json

##这个文件是把转换后的json文件的img路径替换为自己想要的路径

# 输入、输出文件夹路径和待添加的路径
input_folder = "D:\\Open-mmLab\\yolov5-master\\classify\\my_xml"
output_folder = "D:\\Open-mmLab\\yolov5-master\\classify\\ann_savepath"
prefix = "D:\\Open-mmLab\\yolov5-master\\classify\\img_savepath\\"
# 如果输出文件夹不存在,创建它
if not os.path.exists(output_folder):
    os.makedirs(output_folder)

# 遍历输入文件夹中的json文件
for filename in os.listdir(input_folder):
    # 判断是否为json文件
    if filename.endswith(".json"):
        # 读取json文件内容
        input_path = os.path.join(input_folder, filename)
        with open(input_path, "r") as f:
            data = json.load(f)
        # 修改imagePath字段值
        image_path = prefix + filename[:-5] + ".jpg"  # 构造新的imagePath路径
        data["imagePath"] = image_path
        # 保存修改后的内容到输出文件夹
        output_path = os.path.join(output_folder, filename)
        with open(output_path, "w") as f:
            json.dump(data, f, indent=4)

可以看到ImgPath的路径已经改变了
在这里插入图片描述
打开labelme
打开存放图片的文件夹
在这里插入图片描述
**file,change output dir **
在这里插入图片描述
可以看到标注已经出来了
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/677311.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

<Linux开发>驱动开发 -之- Linux LCD 驱动

&#xff1c;Linux开发&#xff1e;驱动开发 -之- Linux LCD 驱动 交叉编译环境搭建&#xff1a; &#xff1c;Linux开发&#xff1e; linux开发工具-之-交叉编译环境搭建 uboot移植可参考以下&#xff1a; &#xff1c;Linux开发&#xff1e; -之-系统移植 uboot移植过程详细…

网络基础一

网络发展 独立模式&#xff1a;计算机之间相互独立。 网络互联&#xff1a;多台计算机连接在一起&#xff0c;完成数据共享。 局域网LAN&#xff1a;计算机数量更多了&#xff0c;通过交换机和路由器连接在一起&#xff1b; 广域网WAN&#xff1a;将远隔千里的计算机都连在…

[BPU部署教程] 万字长文!通透解读模型部署端到端大流程——以终为始,以行为知

去年6月份拿到开发板到现在&#xff0c;转眼已经过去大半年了&#xff0c;这个博客11月初就在写&#xff0c;断断续续写到现在。C部署需要考虑的问题很多&#xff0c;如果只给个简单部署教程的话&#xff0c;就算整理出来&#xff0c;感觉帮助也不大&#xff0c;各位开发时候我…

YOLOv5改进系列(11)——添加损失函数之EIoU、AlphaIoU、SIoU、WIoU

【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制

模版方法模式在 JDK 及 spring 源码中的应用

模版方法模式 模板方法模式是一种行为设计模式&#xff0c; 它在超类中定义了一个算法的框架&#xff0c; 允许子类在不修改结构的情况下重写算法的特定步骤。 更多有关于模版方法模式的介绍详见&#xff1a;https://refactoringguru.cn/design-patterns/template-method 模版…

津津乐道设计模式 - 委派模式详解(以家庭弟位让你彻底明白)

&#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Micro麦可乐的博客 &#x1f425;《Docker实操教程》专栏以最新的Centos版本为基础进行Docker实操教程&#xff0c;入门到实战 &#x1f33a;《RabbitMQ》…

STM32 Proteus仿真DHT11温度湿度光敏光强DS1302闹钟-0044

STM32 Proteus仿真DHT11温度湿度光敏光强DS1302闹钟-0044 Proteus仿真小实验&#xff1a; STM32 Proteus仿真DHT11温度湿度光敏光强DS1302闹钟-0044 功能&#xff1a; 硬件组成&#xff1a; STM32F103C6T6单片机 DHT11温度湿度光敏电阻采集光强 多个按键模拟红外遥控1个LED…

node.js--vue仓库进销存管理信息系统whkb8

随着社会的发展&#xff0c;系统的管理形势越来越严峻。越来越多的用户利用互联网获得信息&#xff0c;但各种信息鱼龙混杂&#xff0c;信息真假难以辨别。为了方便用户更好的获得仓库管理信息&#xff0c;因此&#xff0c;设计一种安全高效的仓库管理信息系统极为重要。 为设计…

【从零开始学习JAVA | 第十五篇】 多态

前言&#xff1a; 本篇我们来解释一下什么是多态关系&#xff0c;多态关系属于面向对象三大特征的最后一个&#xff0c;可以说面向对象的重点就在多态&#xff0c;因此我们要学好面向对象编程思想&#xff0c;就要学好多态。 多态&#xff1a; Java中的多态是指同一类对象在不同…

nssctf之SSRF刷题记录

[NISACTF 2022]easyssrf 题目讲的主要是ssrf以及php伪协议的能力&#xff0c;题目详情如下 一般来说&#xff0c;当一个网站出现curl类的功能时就可能会出现ssrf之类的漏洞&#xff0c;常见的ssrf协议如下 file:/// dict:// sftp:// ldap:// tftp:// gopher://file:// 这种…

基于python的matplotlib、numpy库实现的图形绘制(数据可视化)

一、sin&#xff0c;cos函数 1.题目要求 编写程序&#xff0c;绘制正弦曲线和余弦曲线。 提示&#xff1a;利用numpy的linspace()、sin()或cos()函数生成样本数据、正弦或余弦值。 2.函数讲解及代码 import matplotlib.pyplot as plt import numpy as np#linspace函数是用…

【MySQL数据库 | 第二十篇】explain执行计划

目录 前言&#xff1a; explain&#xff1a; 语法&#xff1a; 总结&#xff1a; 前言&#xff1a; 上一篇我们介绍了从时间角度分析MySQL语句执行效率的三大工具&#xff1a;SQL执行频率&#xff0c;慢日志查询&#xff0c;profile。但是这三个方法也只是在时间角度粗略的…

kubernetes入门案例

kubernetes入门案例 本文我们通过一个 Java Web 应用例子来介绍 kubernetes 的使用&#xff0c;可以让新手快速上手和实践。 此 Java Web 应用的结构比较简单&#xff0c;是一个运行在 Tomcat 里的 Web App&#xff0c;JSP 页面通过 JDBC 直接访问 MySQL 数据库并展示数据。…

青梅产业成立“国家队”,溜溜梅迎来树立品牌良机?

扩大内需在今年政府工作报告中被频频提及。国务院发展研究中心原副主任王一鸣认为&#xff0c;激活潜在消费需求&#xff0c;将释放中国超大规模市场的经济增长潜力。 如今&#xff0c;休闲零食市场也正在经历这样一场激活潜在需求的变革。无论是洽洽食品、三只松鼠、良品铺子…

Kubernetes(k8s)容器编排概述

目录 1 k8s 是什么2 K8s的由来2.1 K8s发展历程2.2 发展时间线 3 为什么使用k8s3.1 什么是容器3.2 什么是 Kubernetes3.3 K8s 的著名优势特色3.3.1 一个平台搞定所有3.3.2 云环境无缝迁移3.3.3 高效的利用资源3.3.4 开箱即用的自动缩放能力3.3.5 使 CI/CD 更加简单3.3.6 可靠性 …

香橙派 1. 上手,配置wifi以及vnc

0. 环境 香橙派4以及电源 读卡器 32GB TF卡 1. 重新烧写固件 Orangepi4_2.1.2_ubuntu_bionic_desktop_linux4.4.179.img 用sd card formatter 格式化TF卡 安装Win32DiskImager&#xff0c;打开&#xff0c;选择IMG&#xff0c;确认U盘&#xff0c;点击写入。 2. 插上TTL 注意…

Mybatis相关知识(2)

Mybatis相关知识 今天接着上期mybatis相关知识进行讲解&#xff0c;今天主要是讲解mybatis和数据库相关的映射&#xff0c;标签和SQL编写等。 会结合实际业务和代码进行讲解。 1 占位符和传参的相关问题 先来看两条xml的SQL。第一条SQL从id名称可知&#xff0c;是根据id删除数…

cookie、session、token学习笔记

一.cookie 1.什么是cookie&#xff1f; Cookie用于存储web页面的用户信息。 Cookie是一些数据&#xff0c;存储于你电脑的文本文件中。 当web服务器向浏览器发送web页面时&#xff0c;在连接关闭后&#xff0c;服务端不会记录用户的信息。 而Cookie的作用就是用于解决“如…

【unity每日一记】 三大金星之(音频Audio + 碰撞和触发+光源组件)

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…

Kubernetes(k8s)部署模式发展

目录 1 简介2 物理单机(~2000)2.1 主要代表 3 虚拟化&#xff1a;初期&#xff08;2001~2009&#xff09;3.1 VMware3.2 laaS 4 虚拟化&#xff1a;成熟期&#xff08;2010~至今&#xff09;4.1 OpenStack4.2 虚拟化四巨头 5 容器化:&#xff08;2013-至今&#xff09;5.1 Dock…