目录
前言
全字段排序
rowid排序
全字段排序 VS rowid排序
-
前言
- 在开发应用的时候,一定会经常碰到需要根据指定的字段排序来显示结果的需求
- 以举例市民表为例,假设你要查询城市是“杭州”的所有人名字,并且按照姓名排序返回前1000个人的姓名、年龄
- 假设这个表的部分定义是这样的:
- 这时的SQL语句可以这么写:
- 这个语句看上去逻辑很清晰,但是你了解它的执行流程吗?
- 在这篇文章聊聊这个语句是怎么执行的,以及有什么参数会影响执行的行为
-
全字段排序
- 前面介绍过索引,所以现在就很清楚了,为避免全表扫描,需要在city字段加上索引
- 在city字段上创建索引之后,用explain命令来看看这个语句的执行情况
- Extra这个字段中的“Using filesort”表示的就是需要排序,MySQL会给每个线程分配一块内存用于排序,称为sort_buffer
- 为了说明这个SQL查询语句的执行过程,先来看一下city这个索引的示意图:
- 从图中可以看到,满足city='杭州'条件的行,是从ID_X到ID_(X+N)的这些记录
- 通常情况下,这个语句执行流程如下所示:
- 1-初始化sort_buffer,确定放入name、city、age这三个字段
- 2-从索引city找到第一个满足city='杭州'条件的主键id,也就是图中的ID_X
- 3-到主键id索引取出整行,取name、city、age三个字段的值,存入sort_buffer中
- 4-从索引city取下一个记录的主键id
- 5-重复步骤3、4直到city的值不满足查询条件为止,对应的主键id也就是图中的ID_Y
- 6-对sort_buffer中的数据按照字段name做快速排序
- 7-按照排序结果取前1000行返回给客户端
- 暂且把这个排序过程,称为全字段排序,执行流程的示意图如下所示:
- 图中“按name排序”这个动作,可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数sort_buffer_size
- sort_buffer_size,就是MySQL为排序开辟的内存(sort_buffer)的大小
- 如果要排序的数据量小于sort_buffer_size,排序就在内存中完成
- 但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序
- 可以用一些方法,来确定一个排序语句是否使用了临时文件
- 某个方法是通过查看 OPTIMIZER_TRACE 的结果来确认的,可以从 number_of_tmp_files中看到是否使用了临时文件
- number_of_tmp_files表示的是,排序过程中使用的临时文件数
- 你一定奇怪,为什么需要12个文件?
- 内存放不下时,就需要使用外部排序,外部排序一般使用归并排序算法
- 可以这么简单理解,MySQL将需要排序的数据分成12份,每一份单独排序后存在这些临时文件中
- 然后把这12个有序文件再合并成一个有序的大文件
- 如果sort_buffer_size超过了需要排序的数据量的大小,number_of_tmp_files就是0,表示排序可以直接在内存中完成
- 否则就需要放在临时文件中排序
- sort_buffer_size越小,需要分成的份数越多,number_of_tmp_files的值就越大
- 接下来再解释一下上图中其他两个值的意思
- 示例表中有4000条满足city='杭州’的记录,所以可以看到 examined_rows=4000,表示参与排序的行数是4000行
- sort_mode 里面的packed_additional_fields的意思是,排序过程对字符串做了“紧凑”处理
- 即使name字段的定义是varchar(16),在排序过程中还是要按照实际长度来分配空间的
- 这里需要注意的是,为了避免对结论造成干扰,把internal_tmp_disk_storage_engine设置成MyISAM
- internal_tmp_disk_storage_engine:内部临时表默认采用的存储引擎
- 否则,select 的结果会显示为4001
- 这是因为查询OPTIMIZER_TRACE这个表时,需要用到临时表,而internal_tmp_disk_storage_engine的默认值是InnoDB
- 如果使用的是InnoDB引擎的话,把数据从临时表取出来的时候,会让Innodb_rows_read的值加1
-
rowid排序
- 在上面这个算法过程里面,只对原表的数据读了一遍,剩下的操作都是在sort_buffer和临时文件中执行的
- 但这个算法有一个问题,就是如果查询要返回的字段很多的话,那么sort_buffer里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差
- 所以如果单行很大,这个方法效率不够好
- 那么,如果MySQL认为排序的单行长度太大会怎么做呢?
- 接下来,修改一个参数,让MySQL采用另外一种算法
- max_length_for_sort_data,是MySQL中专门控制用于排序的行数据的长度的一个参数
- 它的意思是,如果单行的长度超过这个值,MySQL就认为单行太大,要换一个算法
- city、name、age 这三个字段的定义总长度是36,把max_length_for_sort_data设置为16,再来看看计算过程有什么改变
- 新的算法放入sort_buffer的字段,只有要排序的列(即name字段)和主键id
- 但这时,排序的结果就因为少了city和age字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:
- 1-初始化sort_buffer,确定放入两个字段,即name和id
- 2-从索引city找到第一个满足city='杭州’条件的主键id,也就是图中的ID_X
- 3-到主键id索引取出整行,取name、id这两个字段,存入sort_buffer中
- 4.从索引city取下一个记录的主键id
- 5-重复步骤3、4直到不满足city='杭州’条件为止,也就是图中的ID_Y
- 6.对sort_buffer中的数据按照字段name进行排序
- 7-遍历排序结果,取前1000行,并按照id的值回到原表中取出city、name和age三个字段返回给客户端
- 这个执行流程的示意图如下,我把它称为rowid排序:
- 对比之前的全字段排序流程图你会发现,rowid排序多访问了一次表t的主键索引,就是步骤7
- 需要说明的是,最后的“结果集”是一个逻辑概念,实际上MySQL服务端从排序后的sort_buffer中依次取出id,然后到原表查到city、name和age这三个字段的结果,不需要在服务端再耗费内存存储结果,是直接返回给客户端的
- 根据这个说明过程和图示,可以想一下,这个时候执行select ,结果会是多少呢?
- 现在就来看看结果有什么不同
- 首先,图中的examined_rows的值还是4000,表示用于排序的数据是4000行
- 但是select 这个语句的值变成5000了
- 因为这时候除了排序过程外,在排序完成后,还要根据id去原表取值
- 由于语句是limit 1000,因此会多读1000行
- 从OPTIMIZER_TRACE的结果中,还能看到另外两个信息也变了
- sort_mode变成了<sort_key, rowid>,表示参与排序的只有name和id这两个字段
- number_of_tmp_files变成10了,是因为这时候参与排序的行数虽然仍然是4000行,但是每一行都变小了,因此需要排序的总数据量就变小了,需要的临时文件也相应地变少了
-
全字段排序 VS rowid排序
- 来分析一下,从这两个执行流程里,还能得出什么结论
- 如果MySQL实在是担心排序内存太小,会影响排序效率,才会采用rowid排序算法,这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据
- 如果MySQL认为内存足够大,会优先选择全字段排序,把需要的字段都放到sort_buffer中,这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据
- 这也就体现了MySQL的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问
- 对于InnoDB表来说,rowid排序会要求回表多造成磁盘读,因此不会被优先选择
- 这个结论看上去有点废话的感觉,但是要记住它
- 看到这里就了解了,MySQL做排序是一个成本比较高的操作
- 那么是不是所有的order by都需要排序操作呢?
- 如果不排序就能得到正确的结果,那对系统的消耗会小很多,语句的执行时间也会变得更短
- 其实,并不是所有的order by语句,都需要排序操作的
- 从上面分析的执行过程,可以看到,MySQL之所以需要生成临时表,并且在临时表上做排序操作,其原因是原来的数据都是无序的
- 可以设想下,如果能够保证从city这个索引上取出来的行,天然就是按照name递增排序的话,是不是就可以不用再排序了呢?确实是这样的
- 所以可以在这个市民表上创建一个city和name的联合索引,对应的SQL语句是:
- 作为与city索引的对比,来看看这个索引的示意图
- 在这个索引里面,依然可以用树搜索的方式定位到第一个满足city='杭州'的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要city的值是杭州,name的值就一定是有序的
- 这样整个查询过程的流程就变成了:
- 1-从索引(city,name)找到第一个满足city='杭州'条件的主键id
- 2-到主键id索引取出整行,取name、city、age三个字段的值,作为结果集的一部分直接返回
- 3-从索引(city,name)取下一个记录主键id
- 4-重复步骤2、3,直到查到第1000条记录,或者是不满足city='杭州'条件时循环结束
- 可以看到,这个查询过程不需要临时表,也不需要排序
- 接下来用explain的结果来印证一下
- 从图中可以看到,Extra字段中没有Using filesort了,也就是不需要排序了
- 而且由于(city,name)这个联合索引本身有序,所以这个查询也不用把4000行全都读一遍,只要找到满足条件的前1000条记录就可以退出了
- 也就是说,在这个例子里,只需要扫描1000次
- 那这个语句的执行流程有没有可能进一步简化呢?
- 覆盖索引是指,索引上的信息足够满足查询请求,不需要再回到主键索引上去取数据
- 按照覆盖索引的概念,可以再优化一下这个查询语句的执行流程
- 针对这个查询,可以创建一个city、name和age的联合索引,对应的SQL语句就是:
- 这时,对于city字段的值相同的行来说,还是按照name字段的值递增排序的,此时的查询语句也就不再需要排序了
- 这样整个查询语句的执行流程就变成了:
- 1-从索引(city,name,age)找到第一个满足city='杭州’条件的记录,取出其中的city、name和age这三个字段的值,作为结果集的一部分直接返回
- 2-从索引(city,name,age)取下一个记录,同样取出这三个字段的值,作为结果集的一部分直接返回
- 3-重复执行步骤2,直到查到第1000条记录,或者是不满足city='杭州'条件时循环结束
- 然后再来看看explain的结果
- 可以看到,Extra字段里面多了“Using index”,表示的就是使用了覆盖索引,性能上会快很多
- 当然,这里并不是说要为了每个查询能用上覆盖索引,就要把语句中涉及的字段都建上联合索引,毕竟索引还是有维护代价的
- 这是一个需要权衡的决定