分布式任务调度平台 XXL-JOB 实战

news2024/11/20 6:23:06

❤ 作者主页:欢迎来到我的技术博客😎
❀ 个人介绍:大家好,本人热衷于Java后端开发,欢迎来交流学习哦!( ̄▽ ̄)~*
🍊 如果文章对您有帮助,记得关注点赞收藏评论⭐️⭐️⭐️
📣 您的支持将是我创作的动力,让我们一起加油进步吧!!!🎉🎉

1、概述

1.1 什么是任务调度

我们可以思考一下下面业务场景的解决方案:

  • 某电商平台需要每天上午10点,下午3点,晚上8点发放一批优惠券
  • 某银行系统需要在信用卡到期还款日的前三天进行短信提醒
  • 某财务系统需要在每天凌晨0:10分结算前一天的财务数据,统计汇总

以上场景就是任务调度所需要解决的问题

任务调度是为了自动完成特定任务,在约定的特定时刻去执行任务的过程


1.2 为什么需要任务调度

使用Spring中提供的注解@Scheduled,也能实现调度的功能

在业务类中方法中贴上这个注解,然后在启动类上贴上@EnableScheduling注解

@Scheduled(cron = "0/20 * * * * ? ")
 public void doWork(){
 	//doSomething   
 }

感觉Spring给我们提供的这个注解可以完成任务调度的功能,好像已经完美解决问题了,为什么还需要分布式呢?

主要有如下这几点原因:

  1. 高可用:单机版的定式任务调度只能在一台机器上运行,如果程序或者系统出现异常就会导致功能不可用。
  2. 防止重复执行: 在单机模式下,定时任务是没什么问题的。但当我们部署了多台服务,同时又每台服务又有定时任务时,若不进行合理的控制在同一时间,只有一个定时任务启动执行,这时,定时执行的结果就可能存在混乱和错误了
  3. 单机处理极限:原本1分钟内需要处理1万个订单,但是现在需要1分钟内处理10万个订单;原来一个统计需要1小时,现在业务方需要10分钟就统计出来。你也许会说,你也可以多线程、单机多进程处理。的确,多线程并行处理可以提高单位时间的处理效率,但是单机能力毕竟有限(主要是CPU、内存和磁盘),始终会有单机处理不过来的情况。

1.3 XXL-JOB介绍

XXL-Job:是大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展

大众点评目前已接入XXL-JOB,该系统在内部已调度约100万次,表现优异。

目前已有多家公司接入xxl-job,包括比较知名的大众点评,京东,优信二手车,360金融 (360),联想集团 (联想),易信 (网易)等等。

官网地址: https://www.xuxueli.com/xxl-job/

系统架构图
在这里插入图片描述

设计思想
将调度行为抽象形成“调度中心”公共平台,而平台自身并不承担业务逻辑,“调度中心”负责发起调度请求。

将任务抽象成分散的JobHandler,交由“执行器”统一管理,“执行器”负责接收调度请求并执行对应的JobHandler中业务逻辑。

因此,“调度”和“任务”两部分可以相互解耦,提高系统整体稳定性和扩展性。


2、快速入门

2.1 下载源码

源码下载地址:
https://github.com/xuxueli/xxl-job
https://gitee.com/xuxueli0323/xxl-job

2.2 初始化调度数据库

请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。

“调度数据库初始化SQL脚本” 位置为:

/xxl-job/doc/db/tables_xxl_job.sql

2.3 编译源码

解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:
在这里插入图片描述


2.4 配置部署调度中心

2.4.1 调度中心配置

修改xxl-job-admin项目的配置文件application.properties,把数据库账号密码配置上:

### web
server.port=8080
server.servlet.context-path=/xxl-job-admin

### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false

### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/

### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########

### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model

### xxl-job, datasource
spring.datasource.url=jdbc:mysql://192.168.202.200:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=Asia/Shanghai
spring.datasource.username=root
spring.datasource.password=123456
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1
spring.datasource.hikari.validation-timeout=1000

### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.from=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

### xxl-job, access token
xxl.job.accessToken=default_token

### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN

## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100

### xxl-job, log retention days
xxl.job.logretentiondays=30

2.4.2 部署项目

运行XxlJobAdminApplication程序即可.

调度中心访问地址: http://localhost:8080/xxl-job-admin

默认登录账号 “admin/123456”, 登录后运行界面如下图所示。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RKlKjgug-1681612470438)(image\image-20221028162443072.png)]

至此“调度中心”项目已经部署成功。


2.5 配置项目执行器项目

2.5.1 添加Maven依赖

创建SpringBoot项目并且添加如下依赖:

<dependency>
    <groupId>com.xuxueli</groupId>
    <artifactId>xxl-job-core</artifactId>
    <version>2.3.1</version>
</dependency>

2.5.2 执行器配置

在配置文件中添加如下配置:

### 调度中心部署根地址 [选填]:如调度中心集群部署存在多个地址则用逗号分隔。执行器将会使用该地址进行"执行器心跳注册"和"任务结果回调";为空则关闭自动注册;
xxl.job.admin.addresses=http://127.0.0.1:8080/xxl-job-admin
### 执行器通讯TOKEN [选填]:非空时启用;
xxl.job.accessToken=default_token
### 执行器AppName [选填]:执行器心跳注册分组依据;为空则关闭自动注册
xxl.job.executor.appname=xxl-job-executor-sample
### 执行器注册 [选填]:优先使用该配置作为注册地址,为空时使用内嵌服务 ”IP:PORT“ 作为注册地址。从而更灵活的支持容器类型执行器动态IP和动态映射端口问题。
xxl.job.executor.address=
### 执行器IP [选填]:默认为空表示自动获取IP,多网卡时可手动设置指定IP,该IP不会绑定Host仅作为通讯实用;地址信息用于 "执行器注册" 和 "调度中心请求并触发任务";
xxl.job.executor.ip=127.0.0.1
### 执行器端口号 [选填]:小于等于0则自动获取;默认端口为9999,单机部署多个执行器时,注意要配置不同执行器端口;
xxl.job.executor.port=9999
### 执行器运行日志文件存储磁盘路径 [选填] :需要对该路径拥有读写权限;为空则使用默认路径;
xxl.job.executor.logpath=/data/applogs/xxl-job/jobhandler
### 执行器日志文件保存天数 [选填] : 过期日志自动清理, 限制值大于等于3时生效; 否则, 如-1, 关闭自动清理功能;
xxl.job.executor.logretentiondays=30

2.5.3 添加执行器配置

创建XxlJobConfig配置对象:

@Configuration
public class XxlJobConfig {
    @Value("${xxl.job.admin.addresses}")
    private String adminAddresses;
    @Value("${xxl.job.accessToken}")
    private String accessToken;
    @Value("${xxl.job.executor.appname}")
    private String appname;
    @Value("${xxl.job.executor.address}")
    private String address;
    @Value("${xxl.job.executor.ip}")
    private String ip;
    @Value("${xxl.job.executor.port}")
    private int port;
    @Value("${xxl.job.executor.logpath}")
    private String logPath;
    @Value("${xxl.job.executor.logretentiondays}")
    private int logRetentionDays;

    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() {
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setAddress(address);
        xxlJobSpringExecutor.setIp(ip);
        xxlJobSpringExecutor.setPort(port);
        xxlJobSpringExecutor.setAccessToken(accessToken);
        xxlJobSpringExecutor.setLogPath(logPath);
        xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
        return xxlJobSpringExecutor;
    }
}

2.5.4 添加任务处理器

添加任务处理类,交给Spring容器管理,在处理方法上贴上@XxlJob注解:

@Component
public class SimpleXxlJob {
    @XxlJob("demoJobHandler")
    public void demoJobHandler() throws Exception {
        System.out.println("执行定时任务,执行时间:"+new Date());
    }
}

2.6 运行HelloWorld程序

2.6.1 任务配置&触发执行

登录调度中心,在任务管理中新增任务,配置内容如下:
在这里插入图片描述

新增界面如下:
在这里插入图片描述

接着启动定时调度任务:
在这里插入图片描述


2.6.2 查看日志

在调度中心的调度日志中就可以看到,任务的执行结果:
在这里插入图片描述

控制台也可以看到任务的执行信息:
在这里插入图片描述


2.7 GLUE模式(Java)

任务以源码方式维护在调度中心,支持通过Web IDE在线更新,实时编译和生效,因此不需要指定JobHandler。

“GLUE模式(Java)” 运行模式的任务实际上是一段继承自IJobHandler的Java类代码,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务。

添加Service

@Service
public class HelloService {
    public void methodA(){
        System.out.println("执行MethodA的方法");
    }
    public void methodB(){
        System.out.println("执行MethodB的方法");
    }
}

添加任务配置
在这里插入图片描述
通过GLUE IDE在线编辑代码
在这里插入图片描述

编写内容如下:

package com.xxl.job.service.handler;

import cn.wolfcode.xxljobdemo.service.HelloService;
import com.xxl.job.core.handler.IJobHandler;
import org.springframework.beans.factory.annotation.Autowired;

public class DemoGlueJobHandler extends IJobHandler {
    @Autowired
    private HelloService helloService;
    @Override
    public void execute() throws Exception {
        helloService.methodA();
    }
}

启动并执行任务


2.7 执行器集群

2.7.1 集群环境搭建

在IDEA中设置SpringBoot项目运行多个集群
在这里插入图片描述

启动两个SpringBoot程序,需要修改Tomcat端口和执行器端口

  • Tomcat端口8090程序的命令行参数如下:

    -Dserver.port=8090 -Dxxl.job.executor.port=9998
    
  • Tomcat端口8090程序的命令行参数如下:

    -Dserver.port=8091 -Dxxl.job.executor.port=9999
    

在任务管理中,修改路由策略,修改成轮询
在这里插入图片描述

重新启动,我们可以看到效果是,定时任务会在这两台机器中进行轮询的执行:

  • 8090端口的控制台日志如下:
    在这里插入图片描述

  • 8091端口的控制台端口日志如下:
    在这里插入图片描述


2.7.2 调度路由算法讲解

当执行器集群部署时,提供丰富的路由策略,包括:

  1. FIRST(第一个):固定选择第一个机器

  2. LAST(最后一个):固定选择最后一个机器;

  3. ROUND(轮询):依次的选择在线的机器发起调度

  4. RANDOM(随机):随机选择在线的机器;

  5. CONSISTENT_HASH(一致性HASH):

    每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。

  6. LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;

  7. LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;

  8. FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;

  9. BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;

  10. SHARDING_BROADCAST(分片广播):

    广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;


3、分片功能讲解

3.1 案例需求讲解

需求:我们现在实现这样的需求,在指定节假日,需要给平台的所有用户去发送祝福的短信。

3.1.1 初始化数据

在数据库中导入xxl_job_demo.sql数据

3.1.2 集成MyBaetis

添加依赖

<!--MyBatis驱动-->
<dependency>
    <groupId>org.mybatis.spring.boot</groupId>
    <artifactId>mybatis-spring-boot-starter</artifactId>
    <version>1.2.0</version>
</dependency>
<!--mysql驱动-->
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
</dependency>
<!--lombok依赖-->
<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid</artifactId>
    <version>1.1.10</version>
</dependency>

添加配置

spring.datasource.url=jdbc:mysql://localhost:3306/xxl_job_demo?serverTimezone=GMT%2B8&useUnicode=true&characterEncoding=UTF-8
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.username=root
spring.datasource.password=WolfCode_2017

添加实体类

@Setter@Getter
public class UserMobilePlan {
    private Long id;//主键
    private String username;//用户名
    private String nickname;//昵称
    private String phone;//手机号码
    private String info;//备注
}

添加Mapper处理类

@Mapper
public interface UserMobilePlanMapper {
    @Select("select * from t_user_mobile_plan")
    List<UserMobilePlan> selectAll();
}

3.1.3 业务功能实现

任务处理方法实现

@XxlJob("sendMsgHandler")
public void sendMsgHandler() throws Exception{
    List<UserMobilePlan> userMobilePlans = userMobilePlanMapper.selectAll();
    System.out.println("任务开始时间:"+new Date()+",处理任务数量:"+userMobilePlans.size());
    Long startTime = System.currentTimeMillis();
    userMobilePlans.forEach(item->{
        try {
            //模拟发送短信动作
            TimeUnit.MILLISECONDS.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    System.out.println("任务结束时间:"+new Date());
    System.out.println("任务耗时:"+(System.currentTimeMillis()-startTime)+"毫秒");
}

任务配置信息
在这里插入图片描述


3.2 分片概念讲解

比如我们的案例中有2000+条数据,如果不采取分片形式的话,任务只会在一台机器上执行,这样的话需要20+秒才能执行完任务.

如果采取分片广播的形式的话,一次任务调度将会广播触发对应集群中所有执行器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

获取分片参数方式:

// 可参考Sample示例执行器中的示例任务"ShardingJobHandler"了解试用 
int shardIndex = XxlJobHelper.getShardIndex();
int shardTotal = XxlJobHelper.getShardTotal();

通过这两个参数,我们可以通过求模取余的方式,分别查询,分别执行,这样的话就可以提高处理的速度。

之前2000+条数据只在一台机器上执行需要20+秒才能完成任务,分片后,有两台机器可以共同完成2000+条数据,每台机器处理1000+条数据,这样的话只需要10+秒就能完成任务。


3.3 案例改造成任务分片

Mapper增加查询方法

@Mapper
public interface UserMobilePlanMapper {
    @Select("select * from t_user_mobile_plan where mod(id,#{shardingTotal})=#{shardingIndex}")
    List<UserMobilePlan> selectByMod(@Param("shardingIndex") Integer shardingIndex,@Param("shardingTotal")Integer shardingTotal);
    @Select("select * from t_user_mobile_plan")
    List<UserMobilePlan> selectAll();
}

任务类方法

@XxlJob("sendMsgShardingHandler")
public void sendMsgShardingHandler() throws Exception{
    System.out.println("任务开始时间:"+new Date());
    int shardTotal = XxlJobHelper.getShardTotal();
    int shardIndex = XxlJobHelper.getShardIndex();
    List<UserMobilePlan> userMobilePlans = null;
    if(shardTotal==1){
        //如果没有分片就直接查询所有数据
        userMobilePlans = userMobilePlanMapper.selectAll();
    }else{
        userMobilePlans = userMobilePlanMapper.selectByMod(shardIndex,shardTotal);
    }
    System.out.println("处理任务数量:"+userMobilePlans.size());
    Long startTime = System.currentTimeMillis();
    userMobilePlans.forEach(item->{
        try {
            TimeUnit.MILLISECONDS.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    System.out.println("任务结束时间:"+new Date());
    System.out.println("任务耗时:"+(System.currentTimeMillis()-startTime)+"毫秒");
}

任务设置
在这里插入图片描述


 
非常感谢您阅读到这里,如果这篇文章对您有帮助,希望能留下您的点赞👍 关注💖 分享👥 留言💬thanks!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/669598.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Scrum敏捷估算

无论是团队研发一款产品或者开发某一个项目&#xff0c;我们都需要回答“我们大概什么时间能够完成&#xff1f;”&#xff0c; 或者到某一个时间点&#xff0c;我们能够做到什么程度&#xff0c; 因此和传统的开发模式一样&#xff0c;我们在工作开始之前需要对我们需要做的事…

Linux Vim基本操作(文件的打开和编辑)完全攻略(有图有真相)

首先学习如何使用 Vim 打开文件。 Vim 打开文件 使用 Vim 打开文件很简单&#xff0c;例如在命令行模式下打开一个自己编写的文件 /test/vi.test&#xff0c;打开方法如下&#xff1a; [rootitxdl ~]# vim /test/vi.test 刚打开文件时 Vim 处于命令模式&#xff0c;此时文件…

CTFshow-pwn入门-前置基础pwn26-pwn28

什么是ASLR 大多数的攻击都基于这样一个前提&#xff0c;即攻击者知道程序的内存布局&#xff0c;需要提前知道shellcode或者其他一些数据的位置。因此&#xff0c;引入内存布局的随机化能够有效增加漏洞利用的难度&#xff0c;其中一种技术就是ASLR&#xff08;Address Space…

无线wifi视频传输方案|基于qca9531方案SKW99的无线视频流云端推送方案

为满足物联网智慧校园&#xff0c;智能家居&#xff0c;智慧工厂&#xff0c;智能交通、智慧博物馆、培训机构等不同行业实时直播的需求。本篇以集成200万高清摄像头功能的高通方案qca9531 wifi模块SKW99为为例&#xff0c;简单介绍基于WiFi技术的无线视频流云端推送方案。 1、…

上位机与两台PLC之间无线PPI通信

在实际系统中&#xff0c;人机界面与PLC通常不在一起&#xff0c;中心计算机一般放置在控制室&#xff0c;而PLC安装在现场车间&#xff0c;二者之间距离往往从几十米到几千米。如果布线的话&#xff0c;需要挖沟施工&#xff0c;比较麻烦&#xff0c;这种情况下比较适合采用无…

0基础学习VR全景平台篇第47篇:底部菜单-场景/分组复制功能

大家好&#xff0c;欢迎观看蛙色VR官方系列——后台使用课程&#xff01; 本期为大家带来蛙色VR平台&#xff0c;底部菜单—场景/分组复制功能操作。 功能位置示意 一、本功能将用在哪里&#xff1f; 平台用户在编辑作品时可以使用本功能将作品中的某一分组或者某一场景进行复…

岩土工程监测案例:完整链条的振弦传感器、采集仪和在线监测系统

岩土工程监测案例&#xff1a;完整链条的振弦传感器、采集仪和在线监测系统 在岩土工程监测中&#xff0c;振弦传感器被广泛应用于测量土体或岩体的振动情况&#xff0c;以了解地震或其他振动事件对结构物或地基的影响。振弦传感器具有高精度、快速响应、易于安装和低成本等优…

django校园宿舍管理系统-计算机毕设 附源码84831

django校园宿舍管理系统 摘 要 本论文主要论述了如何使用Django开发一个校园宿舍管理系统&#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论述校园宿舍管理系统的当…

RocketMQ部署之动态设置JVM启动参数

这里是weihubeats,觉得文章不错可以关注公众号小奏技术&#xff0c;文章首发。拒绝营销号&#xff0c;拒绝标题党 背景 线上的RocketMQ集群有运行一段时间了。比如测试环境和线上环境的RocketMQ集群部署的机器内存大小肯定不一样。所以可能要写多个部署脚本。非常麻烦 官方的部…

一张图秒懂嵌入式Linux系统的启动流程

一图胜千言&#xff01;看图&#xff1a; 上图是嵌入式系统启动流程图&#xff0c;图中红色的数字圆点表示启动的先后顺序。主要分为 4 个阶段&#xff0c;分别是&#xff1a;第一阶段 bootloader&#xff0c;第二阶段uboot&#xff0c;第三阶段内核启动&#xff0c;第四阶段 a…

【数据管理架构】OLAP 与 OLTP:有什么区别?

这些术语经常相互混淆&#xff0c;那么它们的主要区别是什么&#xff1f;您如何根据自己的情况选择合适的术语&#xff1f; 我们生活在一个数据驱动的时代&#xff0c;使用数据做出更明智决策并更快响应不断变化的需求的组织更有可能脱颖而出。您可以在新的服务产品&#xff08…

理想吹响城市NOA号角:激光雷达车型又火了

作者 | 德新编辑 | 王博 2023下半年&#xff0c;以华蔚小理为代表的智能驾驶头部厂商&#xff0c;其高阶辅助驾驶全面进城。 在过去短短一周时间里&#xff0c;蔚来、华为、理想、小鹏紧锣密鼓悉数公布了新进展。此外据HiEV了解&#xff0c;比亚迪、智己、飞凡等品牌的智驾团队…

excel爬虫相关学习2:vba 爬虫相关xmlhttp

目录 前言&#xff1a;vba 爬虫相关xmlhttp的方法 1 什么是xmlhttp 1.1 定义 1.2 特点 1.3 创建xmlhttp对象的过程 1.4 XMLHTTP对象创建的几种方法&#xff1a; 2 XMLHTTP方法&#xff1a; 2.1 xmlhttp.open(Method, Url, Async, User,Password) 2.1.1 xmlhttp.open(…

再谈JWT

什么是JWT JSON Web Token是一个开发标准&#xff08;RFC 7519&#xff09;,定义了一个紧凑且独立的方式&#xff0c;可以将各方之间的信息作为JSON对象进行安全传输,该信息可以验证和信任&#xff0c;因为是经过数字签名的。 JWT是JSON Web Token的缩写&#xff0c;是一种轻…

第39步 深度学习图像识别:Inception V3建模(Tensorflow)

基于WIN10的64位系统演示 一、写在前面 &#xff08;1&#xff09;Inception V1 Inception是一种深度学习模型&#xff0c;也被称为GoogLeNet&#xff0c;因为它是由Google的研究人员开发的。Inception模型的主要特点是它的“网络中的网络”结构&#xff0c;也就是说&#x…

编译原理笔记6:从正规式到词法分析器(3):DFA最小化、词法分析器的构造、Lex 使用示例

目录 从 DFA 到最小 DFA等价可区分划分算法&#xff1a;最小化 DFA 的状态数&#xff08;DFA化简&#xff09;手写 DFA 词法分析器的构造Lex 使用示例 从 DFA 到最小 DFA 关于星闭包的补充&#xff1a;一个语言被认为是所有可能字的子集。所有可能字的集合可以被认为是所有可能…

手机操作系统的沉浮往事(下)

接上篇&#xff1a;手机操作系统的沉浮往事&#xff08;上&#xff09; 2007年&#xff0c;是手机市场发生历史性转折的一年。 这一年的1月9日&#xff0c;在Macworld 2007大会上&#xff0c;史蒂夫乔布斯正式发布了第一代iPhone。 改变人类科技史的一天 iPhone的问世&#xff…

LeetCode - #83 删除排序链表中的重复元素

文章目录 前言1. 描述2. 示例3. 答案关于我们 前言 我们社区陆续会将顾毅&#xff08;Netflix 增长黑客&#xff0c;《iOS 面试之道》作者&#xff0c;ACE 职业健身教练。&#xff09;的 Swift 算法题题解整理为文字版以方便大家学习与阅读。 LeetCode 算法到目前我们已经更新…

收藏 | 14 种免费 GIS 软件

如果你想绘制一幅世界地图&#xff0c;会选择什么GIS软件呢&#xff0c;ArcGIS、GlobalMapper这些都是国外比较出名的商业GIS软件&#xff0c;当然在国内很容易找到可用的版本&#xff0c;但是也可以使用免费的GIS软件完成所有操作。 这些免费的GIS软件为您提供了完成工作的效…

服务的熔断、降级与限流

1、引言 在微服务架构中&#xff0c;根据业务来拆分成一个个的服务&#xff0c;服务与服务之间可以相互调用&#xff08;RPC&#xff09;。为了保证其高可用&#xff0c;单个服务通常会集群部署。由于网络原因或者自身的原因&#xff0c;服务并不能保证100%可用&#xff0c;如果…