【学习日记2023.6.20】之 分布式事务_CAP定理_BASE理论_微服务集成Seata_Seata的四种事务模式_高可用架构模型

news2025/1/12 22:06:00

文章目录

  • 1. 分布式事务问题
    • 1.1 本地事务
    • 1.2 分布式事务
    • 1.3 演示分布式事务问题
  • 2. 理论基础
    • 2.1 CAP定理
      • 2.1.1 一致性
      • 2.1.2 可用性
      • 2.1.3 分区容错
      • 2.1.4 矛盾
    • 2.2 BASE理论
    • 2.3 解决分布式事务的思路
  • 3. 初识Seata
    • 3.1 Seata的架构
    • 3.2 部署TC服务
      • 3.2.1 下载
      • 3.2.2 解压
      • 3.2.3 修改配置
      • 3.2.4 在nacos添加配置
      • 3.2.5 创建数据库表
      • 3.2.6 启动TC服务
    • 3.3 微服务集成Seata
      • 3.3.1 引入依赖
      • 3.3.2 配置TC地址
      • 3.3.3 其它服务
  • 4. Seata中的四种不同的事务模式
    • 4.1 XA模式
      • 4.1.1 两阶段提交
      • 4.1.2 Seata的XA模型
      • 4.1.3 优缺点
      • 4.1.4 实现XA模式
    • 4.2 AT模式
      • 4.2.1 Seata的AT模型
      • 4.2.2 流程梳理
      • 4.2.3 AT与XA的区别
      • 4.2.4 脏写问题
      • 4.2.5 优缺点
      • 4.2.6 实现AT模式
    • 4.3 TCC模式
      • 4.3.1 流程分析
      • 4.3.2 Seata的TCC模型
      • 4.3.3 优缺点
      • 4.3.4 事务悬挂和空回滚
      • 4.3.5 实现TCC模式
        • 3)编写实现类
    • 4.4 SAGA模式
      • 4.4.1 原理
      • 4.4.2 优缺点
    • 4.5 四种模式对比
  • 5. 高可用
    • 5.1 高可用架构模型
    • 5.2 实现高可用
      • 5.2.1 模拟异地容灾的TC集群
      • 5.2.2 将事务组映射配置到nacos
      • 5.2.3 微服务读取nacos配置

1. 分布式事务问题

1.1 本地事务

本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:
请添加图片描述

1.2 分布式事务

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务
  • 跨服务的分布式事务
  • 综合情况

在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:

  • 创建新订单
  • 扣减商品库存
  • 从用户账户余额扣除金额

完成上面的操作需要访问三个不同的微服务和三个不同的数据库。
请添加图片描述

订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。

但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。

此时ACID难以满足,这是分布式事务要解决的问题

1.3 演示分布式事务问题

通过一个案例来演示分布式事务的问题:

1)创建数据库,名为seata_demo,执行以下SQL语句:

SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;

CREATE DATABASE IF NOT EXISTS SEATA_DEMO;
USE SEATA_DEMO;
-- ----------------------------
-- Table structure for account_tbl
-- ----------------------------
DROP TABLE IF EXISTS `account_tbl`;
CREATE TABLE `account_tbl`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `user_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `money` int(11) UNSIGNED NULL DEFAULT 0,
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 2 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

-- ----------------------------
-- Records of account_tbl
-- ----------------------------
INSERT INTO `account_tbl` VALUES (1, 'user202103032042012', 1000);

-- ----------------------------
-- Table structure for order_tbl
-- ----------------------------
DROP TABLE IF EXISTS `order_tbl`;
CREATE TABLE `order_tbl`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `user_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `commodity_code` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `count` int(11) NULL DEFAULT 0,
  `money` int(11) NULL DEFAULT 0,
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 1 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

-- ----------------------------
-- Records of order_tbl
-- ----------------------------

-- ----------------------------
-- Table structure for storage_tbl
-- ----------------------------
DROP TABLE IF EXISTS `storage_tbl`;
CREATE TABLE `storage_tbl`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `commodity_code` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `count` int(11) UNSIGNED NULL DEFAULT 0,
  PRIMARY KEY (`id`) USING BTREE,
  UNIQUE INDEX `commodity_code`(`commodity_code`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 2 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

-- ----------------------------
-- Records of storage_tbl
-- ----------------------------
INSERT INTO `storage_tbl` VALUES (1, '100202003032041', 10);

SET FOREIGN_KEY_CHECKS = 1;

微服务结构如下:
请添加图片描述

seata-demo:父工程,负责管理项目依赖

  • account-service:账户服务,负责管理用户的资金账户。提供扣减余额的接口
  • storage-service:库存服务,负责管理商品库存。提供扣减库存的接口
  • order-service:订单服务,负责管理订单。创建订单时,需要调用account-service和storage-service

2)启动nacos、所有微服务

3)测试下单功能,发出Post请求:

请求如下:

curl --location --request POST 'http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=20&money=200'

如图:
请添加图片描述

测试发现,当库存不足时,如果余额已经扣减,并不会回滚,出现了分布式事务问题。

2. 理论基础

解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。

2.1 CAP定理

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)
    请添加图片描述

Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。

2.1.1 一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。

比如现在包含两个节点,其中的初始数据是一致的:
请添加图片描述

当修改其中一个节点的数据时,两者的数据产生了差异:
请添加图片描述

要想保住一致性,就必须实现node01 到 node02的数据 同步:
请添加图片描述

2.1.2 可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。

如图,有三个节点的集群,访问任何一个都可以及时得到响应:
请添加图片描述

当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:
请添加图片描述

2.1.3 分区容错

Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。
请添加图片描述

Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务

2.1.4 矛盾

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。

当节点接收到新的数据变更时,就会出现问题了:
请添加图片描述

如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。

如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。

也就是说,在P一定会出现的情况下,A和C之间只能实现一个。

2.2 BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

  • Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
  • **Soft State(软状态):**在一定时间内,允许出现中间状态,比如临时的不一致状态。
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。

2.3 解决分布式事务的思路

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。

  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC)
请添加图片描述

这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务

3. 初识Seata

Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。

官网地址:http://seata.io/,其中的文档、播客中提供了大量的使用说明、源码分析。
请添加图片描述

3.1 Seata的架构

Seata事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚。

  • TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务。

  • RM (Resource Manager) - **资源管理器:**管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

整体的架构如图:
请添加图片描述

Seata基于上述架构提供了四种不同的分布式事务解决方案:

  • XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
  • TCC模式:最终一致的分阶段事务模式,有业务侵入
  • AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
  • SAGA模式:长事务模式,有业务侵入

无论哪种方案,都离不开TC,也就是事务的协调者。

3.2 部署TC服务

3.2.1 下载

下载seata-server包,下载地址

3.2.2 解压

在非中文目录解压缩这个zip包,其目录结构如下:
请添加图片描述

3.2.3 修改配置

修改conf目录下的registry.conf文件:
请添加图片描述

内容修改为如下配置:

registry {
  # tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
  type = "nacos"

  nacos {
    # seata tc 服务注册到 nacos的服务名称,可以自定义
    application = "seata-tc-server"
    serverAddr = "127.0.0.1:8848"
    group = "SEATA_GROUP"
    namespace = ""
    cluster = "SH"
    username = "nacos"
    password = "nacos"
  }
}

config {
  # 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
  type = "nacos"
  # 配置nacos地址等信息
  nacos {
    serverAddr = "127.0.0.1:8848"
    namespace = ""
    group = "SEATA_GROUP"
    username = "nacos"
    password = "nacos"
    dataId = "seataServer.properties"
  }
}

3.2.4 在nacos添加配置

特别注意,为了让tc服务的集群可以共享配置,选择nacos作为统一配置中心。因此服务端配置文件seataServer.properties文件需要在nacos中配好。

格式如下:
请添加图片描述

配置内容如下:

# 数据存储方式,db代表数据库
store.mode=db
store.db.datasource=druid
store.db.dbType=mysql
store.db.driverClassName=com.mysql.cj.jdbc.Driver
store.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=true&serverTimezone=Asia/Shanghai
store.db.user=root
store.db.password=123456
store.db.minConn=5
store.db.maxConn=30
store.db.globalTable=global_table
store.db.branchTable=branch_table
store.db.queryLimit=100
store.db.lockTable=lock_table
store.db.maxWait=5000
# 事务、日志等配置
server.recovery.committingRetryPeriod=1000
server.recovery.asynCommittingRetryPeriod=1000
server.recovery.rollbackingRetryPeriod=1000
server.recovery.timeoutRetryPeriod=1000
server.maxCommitRetryTimeout=-1
server.maxRollbackRetryTimeout=-1
server.rollbackRetryTimeoutUnlockEnable=false
server.undo.logSaveDays=7
server.undo.logDeletePeriod=86400000

# 客户端与服务端传输方式
transport.serialization=seata
transport.compressor=none
# 关闭metrics功能,提高性能
metrics.enabled=false
metrics.registryType=compact
metrics.exporterList=prometheus
metrics.exporterPrometheusPort=9898

其中的数据库地址、用户名、密码都需要修改成自己的数据库信息。

3.2.5 创建数据库表

特别注意:tc服务在管理分布式事务时,需要记录事务相关数据到数据库中,需要提前创建好这些表。

执行以下sql语句:

SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;
CREATE DATABASE IF NOT EXISTS SEATE;
USE SEATE;
-- ----------------------------
-- Table structure for branch_table  分支事务表
-- ----------------------------
DROP TABLE IF EXISTS `branch_table`;
CREATE TABLE `branch_table`  (
  `branch_id` bigint(20) NOT NULL,
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `status` tinyint(4) NULL DEFAULT NULL,
  `client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime(6) NULL DEFAULT NULL,
  `gmt_modified` datetime(6) NULL DEFAULT NULL,
  PRIMARY KEY (`branch_id`) USING BTREE,
  INDEX `idx_xid`(`xid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

-- ----------------------------
-- Records of branch_table
-- ----------------------------

-- ----------------------------
-- Table structure for global_table  全局事务表
-- ----------------------------
DROP TABLE IF EXISTS `global_table`;
CREATE TABLE `global_table`  (
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `status` tinyint(4) NOT NULL,
  `application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `timeout` int(11) NULL DEFAULT NULL,
  `begin_time` bigint(20) NULL DEFAULT NULL,
  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime NULL DEFAULT NULL,
  `gmt_modified` datetime NULL DEFAULT NULL,
  PRIMARY KEY (`xid`) USING BTREE,
  INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,
  INDEX `idx_transaction_id`(`transaction_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

-- ----------------------------
-- Records of global_table
-- ----------------------------


-- ----------------------------
-- Records of lock_table
-- ----------------------------

SET FOREIGN_KEY_CHECKS = 1;

3.2.6 启动TC服务

进入bin目录,运行其中的seata-server.bat即可:
请添加图片描述

启动成功后,seata-server应该已经注册到nacos注册中心了。

打开浏览器,访问nacos地址:http://localhost:8848,然后进入服务列表页面,可以看到seata-tc-server的信息:
请添加图片描述

3.3 微服务集成Seata

以order-service为例来演示。

3.3.1 引入依赖

首先,在order-service中引入依赖:

<!--seata-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-seata</artifactId>
    <exclusions>
        <!--版本较低,1.3.0,因此排除--> 
        <exclusion>
            <artifactId>seata-spring-boot-starter</artifactId>
            <groupId>io.seata</groupId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>io.seata</groupId>
    <artifactId>seata-spring-boot-starter</artifactId>
    <!--seata starter 采用1.4.2版本-->
    <version>${seata.version}</version>
</dependency>

3.3.2 配置TC地址

在order-service中的application.yml中,配置TC服务信息,通过注册中心nacos,结合服务名称获取TC地址:

seata:
  registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
    type: nacos # 注册中心类型 nacos
    nacos:
      server-addr: 127.0.0.1:8848 # nacos地址
      namespace: "" # namespace,默认为空
      group: SEATE_GROUP # 分组,默认是DEFAULT_GROUP
      application: seata-tc-server # seata服务名称
      username: nacos
      password: nacos
  tx-service-group: seata-demo # 事务组名称
  service:
    vgroup-mapping: # 事务组与cluster的映射关系
      seata-demo: SH

微服务如何根据这些配置寻找TC的地址呢?注册到Nacos中的微服务,确定一个具体实例需要四个信息:

  • namespace:命名空间
  • group:分组
  • application:服务名
  • cluster:集群名

以上四个信息,在刚才的yaml文件中都能找到:
请添加图片描述

namespace为空,就是默认的public

结合起来,TC服务的信息就是:public@DEFAULT_GROUP@seata-tc-server@SH,这样就能确定TC服务集群了。然后就可以去Nacos拉取对应的实例信息了。

3.3.3 其它服务

其它两个微服务也都参考order-service的步骤来做,完全一样。

4. Seata中的四种不同的事务模式

4.1 XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。

4.1.1 两阶段提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。

正常情况:
请添加图片描述

异常情况:
请添加图片描述

一阶段:

  • 事务协调者通知每个事物参与者执行本地事务
  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作
    • 如果一阶段都成功,则通知所有事务参与者,提交事务
    • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

4.1.2 Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
请添加图片描述

RM一阶段的工作:

​ ① 注册分支事务到TC

​ ② 执行分支业务sql但不提交

​ ③ 报告执行状态到TC

TC二阶段的工作:

  • TC检测各分支事务执行状态

    a.如果都成功,通知所有RM提交事务

    b.如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

4.1.3 优缺点

XA模式的优点是什么?

  • 事务的强一致性,满足ACID原则。
  • 常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

  • 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
  • 依赖关系型数据库实现事务

4.1.4 实现XA模式

Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:

1)修改application.yml文件(每个参与事务的微服务),开启XA模式:

seata:
  data-source-proxy-mode: XA

2)给发起全局事务的入口方法添加@GlobalTransactional注解:

本例中是OrderServiceImpl中的create方法.
请添加图片描述

3)重启服务并测试

重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。

4.2 AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

4.2.1 Seata的AT模型

基本流程图:
请添加图片描述

阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

4.2.2 流程梳理

用一个真实的业务来梳理下AT模式的原理。

比如,现在又一个数据库表,记录用户余额:

idmoney
1100

其中一个分支业务要执行的SQL为:

update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

一阶段:

1)TM发起并注册全局事务到TC

2)TM调用分支事务

3)分支事务准备执行业务SQL

4)RM拦截业务SQL,根据where条件查询原始数据,形成快照。

{
    "id": 1, "money": 100
}

5)RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90

6)RM报告本地事务状态给TC

二阶段:

1)TM通知TC事务结束

2)TC检查分支事务状态

​ a)如果都成功,则立即删除快照

​ b)如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100

流程图:
请添加图片描述

4.2.3 AT与XA的区别

简述AT模式与XA模式最大的区别是什么?

  • XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
  • XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
  • XA模式强一致;AT模式最终一致

4.2.4 脏写问题

在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
请添加图片描述

解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
请添加图片描述

4.2.5 优缺点

AT模式的优点:

  • 一阶段完成直接提交事务,释放数据库资源,性能比较好
  • 利用全局锁实现读写隔离
  • 没有代码侵入,框架自动完成回滚和提交

AT模式的缺点:

  • 两阶段之间属于软状态,属于最终一致
  • 框架的快照功能会影响性能,但比XA模式要好很多

4.2.6 实现AT模式

AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。

只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。

1)创建数据库表,记录全局锁

其中lock_table表创建到seata数据库中

-- ----------------------------
-- Table structure for lock_table
-- ----------------------------
DROP TABLE IF EXISTS `lock_table`;
CREATE TABLE `lock_table`  (
  `row_key` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `xid` varchar(96) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `branch_id` bigint(20) NOT NULL,
  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `table_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `pk` varchar(36) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime NULL DEFAULT NULL,
  `gmt_modified` datetime NULL DEFAULT NULL,
  PRIMARY KEY (`row_key`) USING BTREE,
  INDEX `idx_branch_id`(`branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

undo_log表创建到seata_demo数据库:

-- ----------------------------
-- Table structure for undo_log
-- ----------------------------
DROP TABLE IF EXISTS `undo_log`;
CREATE TABLE `undo_log`  (
  `branch_id` bigint(20) NOT NULL COMMENT 'branch transaction id',
  `xid` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'global transaction id',
  `context` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'undo_log context,such as serialization',
  `rollback_info` longblob NOT NULL COMMENT 'rollback info',
  `log_status` int(11) NOT NULL COMMENT '0:normal status,1:defense status',
  `log_created` datetime(6) NOT NULL COMMENT 'create datetime',
  `log_modified` datetime(6) NOT NULL COMMENT 'modify datetime',
  UNIQUE INDEX `ux_undo_log`(`xid`, `branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = 'AT transaction mode undo table' ROW_FORMAT = Compact;

2)修改application.yml文件,将事务模式修改为AT模式即可:

seata:
  data-source-proxy-mode: AT # 默认就是AT

3)重启服务并测试

4.3 TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留;

  • Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。

  • Cancel:预留资源释放,可以理解为try的反向操作。

4.3.1 流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。

  • 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30

初始余额:
请添加图片描述

余额充足,可以冻结:
请添加图片描述

此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。

  • 阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30

确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
请添加图片描述

此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元

  • 阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30

需要回滚,那么就要释放冻结金额,恢复可用金额:
请添加图片描述

4.3.2 Seata的TCC模型

Seata中的TCC模型依然延续之前的事务架构,如图:
请添加图片描述

4.3.3 优缺点

TCC模式的每个阶段是做什么的?

  • Try:资源检查和预留
  • Confirm:业务执行和提交
  • Cancel:预留资源的释放

TCC的优点是什么?

  • 一阶段完成直接提交事务,释放数据库资源,性能好
  • 相比AT模型,无需生成快照,无需使用全局锁,性能最强
  • 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库

TCC的缺点是什么?

  • 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
  • 软状态,事务是最终一致
  • 需要考虑Confirm和Cancel的失败情况,做好幂等处理

4.3.4 事务悬挂和空回滚

1)空回滚

当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚

如图:
请添加图片描述

执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。

2)业务悬挂

对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂

执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

4.3.5 实现TCC模式

解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel?

1)思路分析

这里定义一张表:

-- ----------------------------
-- Table structure for account_freeze_tbl
-- ----------------------------
DROP TABLE IF EXISTS `account_freeze_tbl`;
CREATE TABLE `account_freeze_tbl`  (
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `user_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `freeze_money` int(11) UNSIGNED NULL DEFAULT 0,
  `state` int(1) NULL DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
  PRIMARY KEY (`xid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

其中:

  • xid:是全局事务id
  • freeze_money:用来记录用户冻结金额
  • state:用来记录事务状态

业务流程如下:

  • Try业务
    • 记录冻结金额和事务状态到account_freeze表
    • 扣减account表可用金额
  • Confirm业务
    • 根据xid删除account_freeze表的冻结记录
  • Cancel业务
    • 修改account_freeze表,冻结金额为0,state为2
    • 修改account表,恢复可用金额
  • 如何判断是否空回滚?
    • cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
  • 如何避免业务悬挂?
    • try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务

接下来,改造account-service,利用TCC实现余额扣减功能。

2)声明TCC接口

TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,

在account-service项目中的cn.yishooo.account.service包中新建一个接口,声明TCC三个接口:

package cn.yishooo.account.service;

import io.seata.rm.tcc.api.BusinessActionContext;
import io.seata.rm.tcc.api.BusinessActionContextParameter;
import io.seata.rm.tcc.api.LocalTCC;
import io.seata.rm.tcc.api.TwoPhaseBusinessAction;

@LocalTCC
public interface TCCService {

    @TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
    void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
                @BusinessActionContextParameter(paramName = "money")int money);

    boolean confirm(BusinessActionContext context);

    boolean cancel(BusinessActionContext context);
}

3)编写实现类

在account-service服务中的cn.yishooo.account.service.impl包下新建一个类,实现TCC业务:

package cn.yishooo.account.service.impl;

import cn.yishooo.account.entity.AccountFreeze;
import cn.yishooo.account.mapper.AccountFreezeMapper;
import cn.yishooo.account.mapper.AccountMapper;
import cn.yishooo.account.service.TCCService;
import io.seata.core.context.RootContext;
import io.seata.rm.tcc.api.BusinessActionContext;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

/**
 * @Auther: Yishooo
 * @Date: 2023-6-20 - 06 - 20 - 10:32
 * @Description:
 */
@Service
@Slf4j
public class TCCServiceImpl implements TCCService {
    @Autowired
    private AccountFreezeMapper accountFreezeMapper;
    @Autowired
    private AccountMapper accountMapper;

    /**
     * 资源的检测和预留
     * @param userId
     * @param money
     */
    @Override
    public void prepare(String userId, int money) {
        //1.获取全局事务的id
        String xid = RootContext.getXID();
        //1.1解决业务悬挂和幂等性问题   (幂等性例:由于网络原因造成retry重发在MQ中存在两个【1,10】)
        AccountFreeze accountFreeze = accountFreezeMapper.selectById(xid);//查询冻结表是否有记录,有则表示执行了回滚
        if (null != accountFreeze){
            return;
        }

        //2.扣减用户的余额
        accountMapper.deduct(userId,money);
        //3.新增冻结记录
        AccountFreeze entity = new AccountFreeze();
        entity.setState(AccountFreeze.State.TRY);//设置状态为Try:资源的检测和预留
        entity.setFreezeMoney(money);//设置冻结金额
        entity.setUserId(userId);//设置冻结用户的ID
        entity.setXid(xid);//设置全局事务的ID
        accountFreezeMapper.insert(entity);
    }

    /**
     * 业务执行和提交
     * @param context
     * @return
     */
    @Override
    public boolean confirm(BusinessActionContext context) {
        String xid = context.getXid();
        return accountFreezeMapper.deleteById(xid)==1;//提交删除冻结表的数据
    }

    /**
     * 预留资源的释放
     * @param context
     * @return
     */
    @Override
    public boolean cancel(BusinessActionContext context) {
        String xid = context.getXid();
        //数据回显
        AccountFreeze accountFreeze = accountFreezeMapper.selectById(xid);
        //解决空回滚
        if (accountFreeze == null){
            String userId = context.getActionContext("userId").toString();
            accountFreeze.setFreezeMoney(0);//设置冻结金额
            accountFreeze.setUserId(userId);//设置冻结用户的ID
            accountFreeze.setXid(xid);//设置全局事务的ID
            accountFreezeMapper.insert(accountFreeze);
            return true;
        }
        //优化幂等性
        if (accountFreeze.getState().equals(AccountFreeze.State.CANCEL)){
            return true;
        }

        //获取冻结金额
        Integer freezeMoney = accountFreeze.getFreezeMoney();
        //将冻结金额清零,状态改为CANCEL
        accountFreeze.setState(AccountFreeze.State.CANCEL);
        accountFreeze.setFreezeMoney(0);
        //恢复扣减用户的金额
        int refund = accountMapper.refund(accountFreeze.getUserId(), freezeMoney);
        //修改冻结表中的数据
        int count = accountFreezeMapper.updateById(accountFreeze);
        return refund==1 && count == 1;
    }
}

4.4 SAGA模式

Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。

其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。

Seata官网对于Saga的指南:链接地址

4.4.1 原理

在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。
请添加图片描述

Saga也分为两个阶段:

  • 一阶段:直接提交本地事务
  • 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚

4.4.2 优缺点

优点:

  • 事务参与者可以基于事件驱动实现异步调用,吞吐高
  • 一阶段直接提交事务,无锁,性能好
  • 不用编写TCC中的三个阶段,实现简单

缺点:

  • 软状态持续时间不确定,时效性差
  • 没有锁,没有事务隔离,会有脏写

4.5 四种模式对比

我们从以下几个方面来对比四种实现:

  • 一致性:能否保证事务的一致性?强一致还是最终一致?
  • 隔离性:事务之间的隔离性如何?
  • 代码侵入:是否需要对业务代码改造?
  • 性能:有无性能损耗?
  • 场景:常见的业务场景
    请添加图片描述

5. 高可用

Seata的TC服务作为分布式事务核心,一定要保证集群的高可用性。

5.1 高可用架构模型

搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。

但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾。

比如一个TC集群在上海,另一个TC集群在杭州:
请添加图片描述

微服务基于事务组(tx-service-group)与TC集群的映射关系,来查找当前应该使用哪个TC集群。当SH集群故障时,只需要将vgroup-mapping中的映射关系改成HZ。则所有微服务就会切换到HZ的TC集群了。

5.2 实现高可用

5.2.1 模拟异地容灾的TC集群

计划启动两台seata的tc服务节点:

节点名称ip地址端口号集群名称
seata127.0.0.18091SH
seata2127.0.0.18092HZ

之前我们已经启动了一台seata服务,端口是8091,集群名为SH。

现在,将seata目录复制一份,起名为seata2

修改seata2/conf/registry.conf内容如下:

registry {
  # tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
  type = "nacos"

  nacos {
    # seata tc 服务注册到 nacos的服务名称,可以自定义
    application = "seata-tc-server"
    serverAddr = "127.0.0.1:8848"
    group = "SEATA_GROUP"
    namespace = ""
    cluster = "HZ"
    username = "nacos"
    password = "nacos"
  }
}

config {
  # 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
  type = "nacos"
  # 配置nacos地址等信息
  nacos {
    serverAddr = "127.0.0.1:8848"
    namespace = ""
    group = "SEATA_GROUP"
    username = "nacos"
    password = "nacos"
    dataId = "seataServer.properties"
  }
}

进入seata2/bin目录,然后运行命令:

seata-server.bat -p 8092

打开nacos控制台,查看服务列表:
请添加图片描述

点进详情查看:
请添加图片描述

5.2.2 将事务组映射配置到nacos

接下来,需要将tx-service-group与cluster的映射关系都配置到nacos配置中心。

新建一个配置:
请添加图片描述

配置的内容如下:

# 事务组映射关系
service.vgroupMapping.seata-demo=SH

service.enableDegrade=false
service.disableGlobalTransaction=false
# 与TC服务的通信配置
transport.type=TCP
transport.server=NIO
transport.heartbeat=true
transport.enableClientBatchSendRequest=false
transport.threadFactory.bossThreadPrefix=NettyBoss
transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
transport.threadFactory.shareBossWorker=false
transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
transport.threadFactory.clientSelectorThreadSize=1
transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
transport.threadFactory.bossThreadSize=1
transport.threadFactory.workerThreadSize=default
transport.shutdown.wait=3
# RM配置
client.rm.asyncCommitBufferLimit=10000
client.rm.lock.retryInterval=10
client.rm.lock.retryTimes=30
client.rm.lock.retryPolicyBranchRollbackOnConflict=true
client.rm.reportRetryCount=5
client.rm.tableMetaCheckEnable=false
client.rm.tableMetaCheckerInterval=60000
client.rm.sqlParserType=druid
client.rm.reportSuccessEnable=false
client.rm.sagaBranchRegisterEnable=false
# TM配置
client.tm.commitRetryCount=5
client.tm.rollbackRetryCount=5
client.tm.defaultGlobalTransactionTimeout=60000
client.tm.degradeCheck=false
client.tm.degradeCheckAllowTimes=10
client.tm.degradeCheckPeriod=2000

# undo日志配置
client.undo.dataValidation=true
client.undo.logSerialization=jackson
client.undo.onlyCareUpdateColumns=true
client.undo.logTable=undo_log
client.undo.compress.enable=true
client.undo.compress.type=zip
client.undo.compress.threshold=64k
client.log.exceptionRate=100

5.2.3 微服务读取nacos配置

接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:

seata:
  config:
    type: nacos
    nacos:
      server-addr: 127.0.0.1:8848
      username: nacos
      password: nacos
      group: SEATA_GROUP
      data-id: client.properties

重启微服务,现在微服务到底是连接tc的SH集群,还是tc的HZ集群,都统一由nacos的client.properties来决定了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/667399.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据库系统概述——第七章 数据库设计(知识点复习+练习题)

&#x1f31f;博主&#xff1a;命运之光 &#x1f984;专栏&#xff1a;离散数学考前复习&#xff08;知识点题&#xff09; &#x1f353;专栏&#xff1a;概率论期末速成&#xff08;一套卷&#xff09; &#x1f433;专栏&#xff1a;数字电路考前复习 &#x1f99a;专栏&am…

p7付费课程笔记:jvm基础知识、字节码、类加载器

编程语言 演化&#xff1a; 机器语言->编程语言->高级语言&#xff08;java&#xff0c;c,Go,Rust等&#xff09; 面向过程–面向对象-面向函数 java是一种面向对象、静态类型、编译执行&#xff0c;有VM&#xff08;虚拟机&#xff09;/GC和运行时、跨平台的高级语言…

第二章 视觉感知与视觉通道(复习)

大纲 视觉感知 认知 视觉通道 色彩* 可视化致力于外部认知&#xff0c;也就是说&#xff0c;怎样利用大脑以外的资源来增强大脑本身的认知能力。 感知是指客观事物通过人的感觉器官在人脑中形成的直接反映 感觉器官&#xff1a;眼、耳、口、鼻、神经末梢 视觉感知就是客观事物通…

世界史上五个横跨亚欧非三大洲的超强帝国

古代地中海和西亚地区文明出现的很早&#xff0c;经济文化社会都比较先进&#xff0c;其中古埃及早在四千多年前就建立了庞大的帝国&#xff0c;给世人留下了不朽的金字塔&#xff1b;两河流域、希腊半岛也很早就出现了城邦制的国家&#xff0c;也创造了灿烂的文明。同时&#…

架构设计我们要注意什么?

这几天我正在做一个新项目的架构设计&#xff0c;关于动态流程引擎平台的搭建&#xff0c;涉及到了系统架构的设计&#xff0c;里面涉及了方方面面&#xff0c;所以就想着结合自己的实际经验&#xff0c;遇到的问题&#xff0c;以及自己的理解&#xff0c;为大家做一个简单的分…

损失函数:IoU、GIoU、DIoU、CIoU、EIoU、alpha IoU、SIoU、WIoU超详细精讲及Pytorch实现

前言 损失函数是用来评价模型的预测值和真实值不一样的程度&#xff0c;损失函数越小&#xff0c;通常模型的性能越好。不同的模型用的损失函数一般也不一样。 损失函数的使用主要是在模型的训练阶段&#xff0c;如果我们想让预测值无限接近于真实值&#xff0c;就需要将损…

献给蓝初小白系列(二)——Liunx应急响应

1、Linux被入侵的症状​​ ​​https://blog.csdn.net/weixin_52351575/article/details/131221720​​ 2、Linux应急措施 顺序是&#xff1a;隔离主机--->阻断通信--->清除病毒--->可疑用户--->启动项和服务--->文件与后门--->杀毒、重装系统、恢复数据 …

python代码加密方案

为何要对代码加密&#xff1f; python的解释特性是将py编译为独有的二进制编码pyc 文件&#xff0c;然后对pyc中的指令进行解释执行&#xff0c;但是pyc的反编译却非常简单&#xff0c;可直接反编译为源码&#xff0c;当需要将产品发布到外部环境的时候&#xff0c;源码的保护尤…

Guitar Pro是什么软件 Guitar Pro有什么用

相信玩吉他的朋友多多少少都听说过Guitar Pro这款软件&#xff0c;那大家知道Guitar Pro是什么软件&#xff1f;Guitar Pro有什么用呢&#xff1f;今天小编就和大家分享一下关于Guitar Pro这款吉他软件的相关内容。 一、Guitar Pro是什么软件 简单说Guitar Pro是一款吉他谱软…

Vue实现元素沿着坐标数组移动,超出窗口视图时页面跟随元素滚动

一、实现元素沿着坐标数组移动 现在想要实现船沿着下图中的每个河岸移动。 实现思路&#xff1a; 1、将所有河岸的位置以 [{x: 1, y: 2}, {x: 4, y: 4}, …] 的形式保存在数组中。 data() {return {coordinateArr: [{ x: 54, y: 16 }, { x: 15, y: 31 }, { x: 51, y: 69 }…

leetcode77. 组合(回溯算法-java)

组合 leetcode77. 组合题目描述解题思路代码演示 递归专题 leetcode77. 组合 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;https://leetcode.cn/problems/combinations 题目描述 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个…

量化交易:止盈策略与回测

我们买基金或股票的时候通常用最简单的策略进行决策&#xff1a;低买高卖&#xff0c;跌的多了就加仓拉低持有成本&#xff0c;达到收益率就卖出。 那么如何用代码表示这个策略呢&#xff1f;首先定义交易信号则是&#xff1a;0.5%时买入&#xff0c;目标止盈线是1.5%&#xf…

Java官方笔记12异常

Exception Definition: An exception is an event, which occurs during the execution of a program, that disrupts the normal flow of the programs instructions. the checked exception 比如&#xff0c;java.io.FileNotFoundException the error 比如&#xff0c;java.i…

Flink流批一体计算(2):Flink关键特性

目录 流式处理 丰富的状态管理 流处理 自定义时间流处理 有状态流处理 通过状态快照实现的容错 流式处理 在自然环境中&#xff0c;数据的产生原本就是流式的。无论是来自 Web 服务器的事件数据&#xff0c;证券交易所的交易数据&#xff0c;还是来自工厂车间机器上的…

优先级队列建立小根堆来解决前K个高频元素(TOP K问题)

目录 场景一&#xff1a;解决前K个高频元素需要解决如下几个问题&#xff1a; 优先级队列PriorityQueue 堆的定义 题目链接 场景二&#xff1a;亿万级数据取前TOP K / 后TOP K 数据 场景一&#xff1a;解决前K个高频元素需要解决如下几个问题&#xff1a; 1.记录每一个元…

【C++】4.工具:读取ini配置信息

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍读取ini配置信息。 学其所用&#xff0c;用其所学。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下次更新不迷路&…

医院PACS系统的发展历史

PACS全称Picture Archivingand Communication Systems。它是应用在医院影像科室的系统&#xff0c;主要的任务就是把日常产生的各种医学影像&#xff08;包括核磁&#xff0c;CT&#xff0c;超声&#xff0c;X光机&#xff0c;红外仪、显微仪等设备产生的图像&#xff09;通过各…

【工程应用八】终极的基于形状匹配方案解决(小模型+预生成模型+无效边缘去除+多尺度+各项异性+最小组件尺寸)...

我估摸着这个应该是关于形状匹配或者模版匹配的最后一篇文章了&#xff0c;其实大概是2个多月前这些东西都已经弄完了&#xff0c;只是一直静不下来心整理文章&#xff0c;提醒一点&#xff0c;这篇文章后续可能会有多次修改(但不会重新发文章&#xff0c;而是在后台直接修改或…

【MySQL 日志管理、备份与恢复】

目录 一、数据库备份的分类1、从物理与逻辑的角度1.1、物理备份: 对数据库操作系统的物理文件&#xff08;如数据文件&#xff0c;日志文件等&#xff09;的备份1.2、逻辑备份 2、从数据库的备份策略角度3、常见的备份方法3.1、物理冷备3.2、专用备份工具mysqldump 或者 mysqlh…

【Windows系统】windows服务

概述 Microsoft Windows 服务&#xff08;即&#xff0c;以前的 NT 服务&#xff09;使您能够创建在它们自己的 Windows 会话中可长时间运行的可执行应用程序。这些服务可以在计算机启动时自动启动&#xff0c;可以暂停和重新启动而且不显示任何用户界面。这种服务非常适合在服…