BUG越改越多?微信团队用自动化测试化险为夷

news2024/11/25 18:50:16

44b3bcbde03e72ada93db295abc4ef05.png

8843ec30d2cce83f294be66967e6bc56.gif

👉腾小云导读

作为后台开发 Coder,你可能会对以下场景感到似曾相识:历史上处理过的 BUG 反复横跳;版本兼容逻辑多,修复一个 BUG 触发了更多 BUG;上线时系统监控毫无异常,过段时间用户投诉某个页面无数据;改动祖传代码时如履薄冰,心智负担极重。为此本文提出一个自动化测试系统,它能够低成本实现100%的测试用例覆盖率,极大减轻管理自动化测试用例的工作量并提高测试效率,保障后台服务平稳变更。欢迎阅读~

👉目录

1 背景

    1.1 接口自动化测试介绍

    1.2 现状及痛点

    1.3 为什么要自研

    1.4 目标

2 自动化测试系统实现

    2.1 整体架构

    2.2 统一 HTTP 和 RPC 访问形式

    2.3 接口参数传递(参数池构造)

    2.4 JSON Schema 组件

    2.5 JSON Path 组件

    2.6 变更系统接入与调度

3 用例自动化生成

    3.1 现状以及分析思路

    3.2 整体流程

    3.3 流量特征分析

    3.4 用例生成

    3.5 用例发现与补全

    3.6 流量特征应用

4 总结

01

背景

   1.1 接口自动化测试介绍

顾名思义,接口测试就是对系统或者组件之间的接口进行测试,主要校验数据的交换、传递以及系统间的相互依赖关系等。根据测试金字塔的模型理论,测试分为三层,分别是单元测试(Unit Tests)、服务测试(Service Tests)、UI 测试(UI Tests),而我们的接口自动化测试就是服务测试层。

单元测试会导致工作量大幅提升,在需求快速迭代和人力紧张的背景下,很难持续推进,本文暂不讨论。而接口自动化测试容易实现、维护成本低,且收益更高,有着更高的投入产出比。

   1.2 现状及痛点

实际上我们有一个叫 WeJestAPITest 的自动化测试平台,它是基于 Facebook 开源的 Jest 测试框架搭建的,用于校验后台的接口返回是否符合预期。在这个平台此前运行了数年的测试,一定程度上保障了后台服务的平稳运行。

但在长期使用中我们也发现了一些痛点:

  • 遇到失败用例习惯性申请跳过测试,自动化测试形同虚设;

  • 版本需求迭代速度飞快,用例落后于需求变更,用例迭代成本高;

  • 开发同学很难参与到用例维护中,而测试同学对接口逻辑了解不深,编写的用例过于简单、僵硬,导致覆盖率低、用例质量差,开发上线心理负担重。

我们需要的不只是一个自动化测试系统,而是一个更好用的、管理成本更低的自动化测试系统。

   1.3 为什么要自研

提到接口自动化测试工具,开源有 JMeter、Postman 等,司内也有成熟的 WeTest、ITEST 等,这些都是开箱即用的,但经过调研和评估,我们还是决定自己造一个轮子。考虑的点如下:

  • 测试工具的实现原理并不复杂,实现成本不高,维护难度不大;

  • 现有工具并不符合业务要求,例如自定义的调度方案,以及支持内部 RPC 框架;

  • 我们需要把自动化测试与现有的系统连接起来,比如上线系统,用例失败告警系统,流量分析系统等;

  • 当我们需要一些非标准能力的时候,外部工具很难快速,甚至无法支持,拓展性弱;

  • 这个系统主要是为了覆盖后台接口测试,使用体验上要更贴近后台同学的使用习惯,降低用例管理成本。

   1.4 目标

结合我们遇到的痛点以及业务需求,自研的自动化测试系统应该具备以下的能力:

  • 它应该是跟实现语言无关的,甚至是无代码的,消除不同编程语言和框架带来的隔阂;

  • 编写用例应该是纯粹的,用例跟测试服务分离,变更用例不需要变更自动化测试服务;

  • 能够支持场景测试(多个用例组成场景),且能支持用例间的变量引用;

  • 提供多种调度方案,可以按全量调度、按业务模块调度、按用例组调度、按单个用例调度,充分满足业务和调试需求;

  • 这个系统要支持同时管理 HTTP 和 RPC 用例,可以覆盖请求的上下游链路;

  • 尽最大可能降低后台同学编写用例的成本。

02

自动化测试系统实现

   2.1 整体架构

3fdd7868ef84ee3e4a3f3edcb4ad3692.png

   2.2 统一 HTTP 和 RPC 访问形式

HTTP 和 RPC 请求在形式上可以被统一起来,其描述形式如下:

HTTP访问方式:http://host:port/urlpath + reqbody

RPC访问方式:rpc://ip:port/method + reqbody

通过这种统一的描述形式,再结合我们的业务架构,就可以设计一种通用的访问方式。后台的系统架构如下图所示:

93f81549fc880889dd6d6a274f8163cd.png

从 proxy 层往下,所有的调用都是一个个后台服务模块,HTTP 访问的是逻辑层,RPC 访问的是服务层。那么只需要配置用例的归属模块,通过模块名 + Client 配置就可以对 HTTP 和 RPC 请求进行区分以及寻址。

从变更系统的角度来看,我们的上线变更也是按模块来的。因此把用例归属到一个个具体的模块,是最符合后台同学认知的做法。

因此我们通过配置模块名这种统一的形式,为使用者提供了统一的管理方式,只需要指定模块名就可以任意访问 HTTP 或者 RPC 请求,其流程如下:

edc4b24344fe5d17a7640c2b569fff75.png

在红色虚线框的流程中,只需要配置模块名,就可以通过模块名获取到 RPC 服务的所有信息,包括其接口定义、请求包定义、回包定义,这不是一种通用能力,需要业务基于系统架构以及线上环境去拓展,但这带来了以下便利:

  • 可以支持任意的业务 RPC 框架,拓展性强;

  • 只需要配置模块名就可以访问所有的 RPC 请求,无需逐个手动上传解析 proto 文件,减少操作步骤;

  • 不需要关心 proto 的更新,实时拉取线上 proto 的信息,协议永远是最新版本。

这里的统一包含两部分:第一部分是访问形式的统一(模块),降低了配置用例的成本;第二部分是数据的统一(JSON),它统一了对回包方式的校验,降低了校验成本。

   2.3 接口参数传递(参数池构造)

很多业务场景的完成都是由多个接口组成的一条链路实现,而且这种链路型的自动化测试,通常会存在参数依赖关系,一个用例的入参,可能要依赖上游响应回包的某个字段值,因此需要提取出来并传递给下一个接口。如下图:

f94dff2b5611dfbdc6fe1cdc17302d88.png

其解决方案是,通过正则或者 JSON Extracor 等提取的结果作为变量,然后再传递给下游用例使用,这也是很多测试工具使用的方式,但是维护起来不够方便,仍有进一步优化的空间。

于是我们提出了参数池的概念,将每个用例可能用到的字段都放入一个池子里,这个池子的元素是一个个 key-value。key 是我们要使用的变量,value 则是 key 对应的取值,值得注意的是,value 既可以是一个字面值,也可以是一个 JSONPointer 的路径,这个路径可以从响应回包中提取变量值。

在这种方式下,不同用例间的参数依赖不再是从上一个“传递”到下一个,而变成了一个随取随用的池子,因此我们把它称为参数池。同时我们通过自定义的语法,实现了一个简单的模板引擎,将我们引用的变量替换为池子里的 value 值。参数池构造以及使用图示如下:

db1dd50db41728e2f328281cf62dd1fe.png

   2.4 JSON Schema 组件

下面贴一段代码看看现有 WeJestAPITest 框架是如何对返回值做校验的,并分析一下它可能存在的问题:

function bookInfoBaseCases(bookInfoObject) {
    it('预期 bookInfo.bookId 非空,且为字符串,且等于12345', () => {
        expect(bookInfo.bookId).not.toBeNull();
        expect(typeof bookInfo.bookId).toEqual('string');
        expect(bookInfo.bookId).toEqual('12345');
    });
}

这种校验方式存在以下几个问题:

  • 这是针对单个字段进行校验,如果一个回包里有几十上百个字段,这种手工方式不可能实现全量字段校验;

  • 编写一个用例需要有 js 基础,对其他编程语言的使用者不友好;

  • 断言规则都是一条条散落在代码文件中,展示和管理有难度;

  • 调试需要变更测试服务,调试成本高。

现有框架的不便导致了用例管理上的种种问题,而我们根据这些不便之处去反向思考,我们到底需要什么样的校验方式,这种情况下我们找到了 JSON Schema。

JSON Schema 是描述 JSON 数据格式的工具,Schema 可以理解为模式或者规则,它可以约束 JSON 数据应该符合哪些模式、有哪些字段、其值是如何表现的。JSON Schema 本身用 JSON 编写,且需要遵循 JSON 本身的语法规范。

下面以bookInfo的校验为例,写一份 JSON Schema 的校验规则:

// bookInfo信息
{
    "bookId":"123456",
    "title":"书名123",
    "author":"作者123",
    "cover":"https://abc.com/cover/123456.jpg",
    "format":"epub",
    "price":100
}

// 对应的JsonSchema校验规则
{
    "type": "object",
    "required": ["bookId", "title", "author", "cover", "format", "price"],
    "properties": {
    "bookId": {
        "type": "string",
        "const": "123456"
    },
    "title": {
        "type": "string",
        "minLength": 1
    },
    "author": {
        "type": "string",
        "minLength": 1
    },
    "cover": {
        "type": "string",
        "format": "uri"
    },
    "format": {
        "type": "string",
        "enum": ["epub", "txt", "pdf", "mobi"]
    },
    "price": {
        "type": "number",
        "exclusiveMinimum": 0
    }
  }
}

通过对比,JSON Schema 的优点非常显而易见:

  • 可读性高,其结构跟 JSON 数据完全对应;

  • 所有规则都处在一个 Schema 中,管理和展示清晰易懂;

  • 它本身是一个 JSON,对于任何编程语言的使用者都没有额外学习成本;

  • 此外,我们可以通过一个现有的 JSON 反向生成 JSON Schema,然后在这个 JSON Schema 的基础上进行简单的修改,就能得到最终的校验规则,极大降低了我们编辑用例的工作量和时间成本。

   2.5 JSON Path 组件

有了 JSON Schema 之后,我们校验方式看似已经非常完美了。它既可以低成本的覆盖全量字段校验,还可以很方便的进行字段类型、数值的校验。

但实际使用中我们发现有些测试场景是 JSON Schema 覆盖不到的,比如:一条用户评论有 createtime 和 updatetime 两个字段,需要校验 updatetime >= createtime。这是 JSON Schema 的短板,它可以约束 JSON 的字段,但是它没办法对两个字段进行对比;同时 JSON Schema 跟 JSON 是一对一的,如果我们需要比较两个不同 JSON 的同一个字段,它同样无能为力。这就引出了我们需要的第二个工具 —— JSONPath。

JSONPath 是一个 JSON 的信息抽取工具,可以从 JSON 数据中抽取指定特定的值、对象或者数组,以及进行过滤、排序和聚合等操作。而 JSONPath 只是一个 JSON 字段的提取工具,要利用它来实现一个断言判断还需要进一步封装。

在这里我们用一个 JSONPath 表达式来表示一个断言,下面是一些简单的使用示例:

// 校验updateTime > createTime
$.updateTime > $.createTime

// 返回的bookId必须为某个固定值
$.bookId == ["123456"]

// datas数组不能为空
$.datas.length > [0]

// datas数组中必须包含某本书,且价格要大于0
$.datas[?(@.bookId=='123456')] > [0]

值得注意的是,JSON Schema 和 JSON Path 断言校验并非二选一,既可以同时校验,也可以根据场景选择任意一种校验方式。与此同时,如果项目前后端交互的协议是 XML、 proto 或者其他协议,可以将其统一转为 JSON 格式,JSON 更容易理解且工具链更多更成熟,否则我们将要为每一种序列化的协议都开发一套类似的工具,重复劳动。

   2.6 变更系统接入与调度

在这里,我们使用异步 MQ 去调度测试任务,它有三个主要的特点:

多触发源任意粒度指定环境

支持变更系统、管理平台、例行任务调度等多个来源的任务触发信号。

支持按全量用例调度、按变更模块调度、按用例组调度、按单用例调度。支持调度到现网环境和测试环境,甚至可以指定 IP 对某台机器定向测试。

e9b983f04d6b0cdda4cca156bf32f603.png

03

自动化测试系统实现

在拥有了一个接口自动化测试平台之后,我们面临一个新的问题:如何快速提升自动化测试的覆盖率?

这个问题有一个隐含的前提,我们需要一个可以衡量覆盖率的指标,接下来将介绍我们如何构造这个指标,并分享一些提升覆盖率的方案。

   3.1 变更系统接入与调度

要衡量覆盖率,第一反应必然是基于前后端约定的协议进行分析。但是沿着这条思路去分析我们遇到了以下几个难点:

  • 协议管理不规范,散落在 git 文档、yapi、wiki 等多处地方,且格式不统一;

  • 文档落后于实际接口协议,且可靠性有待考究;

  • 协议参数并非都是正交的,使用协议计算出来的参数组合不符合实际情况;

  • 因此,使用前后端协议进行分析这条路是行不通的。因此我们打算从线上流量入手,对流量的参数特征进行分析,并使用线上流量来生成自动化测试用例。

   3.2 整体流程

d918b3ba9f6347098435a16c8043192e.png

   3.3 流量特征分析

一个 HTTP 请求,我们通常需要分析的是以下部分:请求方法、URL、请求包、返回包。而结合我们的业务场景,我们还需要一些额外的信息:用户 ID、平台(安卓、IOS、网页等)、客户端版本号等。我们调研过一些流量采集分析并生成用例的系统,大多只能对通用信息进行分析,并不能很好的结合业务场景进行分析,拓展性不足。

我们有一个请求,其 url 参数为 listType=1&listMode=2、vid 为10000、平台为 android、版本号为7.2.0,其请求体如下:

{
  "bookId":"12345",
  "filterType":1,
  "filterTags":["abc","def"],
  "commOptions":{
    "ops1":"testops1",
    "ops2":"testops2"
  }
}

其中 url 和 header 里的参数都很容易解析,不再赘言,下面讲一下 JSON 请求中的参数提取方法。这里我们用 JSONPointer 来表示一个参数的路径,作为这个参数的 key 值,那么可以提取获得以下参数:

// url 和 header 中提取的参数
listType=1
listMode=2
vid=10000
platform=android
appver=7.2.0

// JSON 中提取的参数
/bookId=12345
/filterType=1
/filterTags=["abc", "def"]
/commOptions/opts1=testops1
/commOptions/opts2=testops2

如此一来,参数的表现形式可以统一为 key-value 的形式,我们调研的工具也基本止步于此,接下来要么是用正交计算用例的方式辅助人工编辑用例,要么就是对大量流量生成的用例进行去重。

但这达不到我们预设的目标,我们不妨更进一步,通过大量的线上流量构造出接口参数的特征,在这里我们提出一个定义,接口参数的特征包括五部分:

  • 参数个数;

  • 参数类型;

  • 参数取值范围;

  • 参数可枚举性;

  • 参数可组合性。

我们的工作主要集中在参数的可枚举性分析,这也是参数分析的突破点。假设我们从线上对某个接口进行采样,采样条数为 1W 条,将得到以下的参数:

listType=[1, 2, 3, 4]
listMode=[1, 2]
vid=[10000, 10001, 10002, 10003, ...] // 3000+
platform=[android, ios, web]
appver=[7.2.0, 7.1.0, 7.3.0, ...] // 20
/bookId=[12345, 23456, 34567, 56779, ...] // 4000+
/filterType=[1, 2]
/filterTags=[abc, def, efg]
/commOptions/opts1=[testops1, testops1_]
/commOptions/opts2=[testops2]

有了以上提取到的参数枚举值,我们设定一个合理的阈值(比如30),就可以判断哪些参数是可枚举的,很明显 vid 和 /bookId 并不是可枚举的参数,在覆盖用例时不需要对这两个参数进行覆盖。

在实践中,我们发现固定阈值并不能精准识别到有效的枚举参数,阈值需要跟随采样的数据动态调整。不同接口请求量可能从几十到几十万不等,如果一个接口请求条数只有30条,每一个参数的枚举值都小于设定的阈值,所有参数都是有效参数,这不符合实际情况。因此阈值要随着采样条数的变化而变化,可以按请求数量阶梯变化,也可以按请求数量成比例变化。对于特定参数,还要提供人工配置快速介入,指定参数是否可枚举。

在我们知道哪些参数是可枚举的有效参数后,接下来可以对参数的可组合性进行分析。实际上我们并不需要分析任意两个参数两两是否可组合,基于线上流量去分析即可。我们简单给一个例子:

listType=1&listMode=1&platform=android&appver=7.2.0
listType=1&listMode=1&platform=ios&appver=7.2.0
listType=1&listMode=1&platform=web&appver=7.2.0
listType=2&listMode=1&platform=android&appver=7.2.0
listType=2&listMode=1&platform=ios&appver=7.2.0
listType=2&listMode=1&platform=web&appver=7.2.0
listType=3&listMode=2&platform=android&appver=7.2.0
listType=3&listMode=2&platform=ios&appver=7.2.0
listType=3&listMode=2&platform=web&appver=7.2.0

那么在覆盖用例时我们需要覆盖这9个组合,通过组合分析我们甚至可以发现线上是否有错误使用的参数组合,需求是否发生了变更产生了新的组合参数。

要提升覆盖率,本质上就是覆盖所有可枚举参数的枚举类型以及组合,这就是我们在上面提到过的覆盖率指标。有了这个指标,我们就可以对覆盖率提出以下计算公式:

全局覆盖率 = 已覆盖的接口数 / 全部接口数 * 100%

接口有效用例 = 全部可枚举参数的可枚举值 + 全部可枚举参数的组合

接口覆盖率 = 已覆盖的有效用例数 / 接口有效用例数 * 100%

PS:当接口覆盖率达100%时视为接口已实现用例覆盖

   3.4 用例生成

经过上面对流量的特征分析以及筛选,我们得到了一批有效流量,接下来就可以使用这些流量来自动化生成用例,其中最主要的工作是为用例生成校验的 JSON Schema 规则。其生成过程如下图所示:

7733bd0e2a9e8af05837a3a11dfe548e.png

如上图所示,任何 JSON Schema 的生成工具所生成的 Schema 都不可能百分百满足业务需求,我们仍然要根据业务场景对 Schema 进行微调。比如在搜索场景下,我们用一个 results 数组来承载返回结果,生成器生成的 Schema 只约定了 results 字段必须要存在,并且字段类型为数组类型。如果有一天返回了一个空的 results 数组,那么默认生成的 Schema 是检查不出这个问题的,我们可以为 results 数组增加 minItems = 1 的规则,要求 results 数组必须大于等于 1,下次校验时遇到空数组就能够告警出来。

同时,在用例执行时遇到校验不通过的情况,我们也设计了一套自动化 promote 用例的流程,不需要手工对用例进行改动。其流程如下:

70ba7cdffab925e6752e1eaf3d35917c.png

其中用例优化分为三种情况:

移除用例:用例已失效,直接删除用例;

替换用例:用例不符合预期,从线上根据同样的参数选取请求重新生成一个用例;

优化 Schema:用例中某些字段并非必需字段,或者属于预期内的变化(比如用户的未购变已购导致某些字段被替换)。

bb3ac9f06e8458d0a50e220d726b8f19.png

我们使用的 Schema 生成工具是 genson,它可以为一个 JSON 生成对应的 JSON Schema。这个工具有个很重要的特性:它是一个多输入的 JSON Schema 生成工具,可以接收多个 JSON 或者 Schema 作为输入参数,生成一个符合所有输入要求的 Schema,这一点正是我们自动化的关键,使得我们不需要手动编辑校验规则。下面简单展示一下我们现在的系统是如何优化失败用例的:

27ee3295634f9eb764ab56a80766e33e.png

   3.5 用例发现与补全

用例的自动化发现分为两个离线任务:一个是新接口的发现,一个是新用例的发现。

新接口是指我们有新的功能上线,当线上有流量访问时,我们应该及时发现这个新的请求,并将这个请求纳入我们的自动化测试管理范围。

新用例是指通过对流量分析,发现了新加的可枚举参数,或者之前用例未曾覆盖的参数组合,我们通过对比线上流量和已经采集落库的用例进行 diff 分析,得到并生成新的用例。

下图是对用例的自动化发现与补全的简单示例:

57ae73d01a4773b7ee31a05e0913ba46.png

   3.6 流量特征应用

基于上面提到的流量特征分析以及用例生成,我们的用例个数从150+提升到8000+,实现了读接口100%用例覆盖,覆盖率有了一个质的飞跃。

对于写接口实现了覆盖率统计以及用例推荐,极大降低了在编辑用例时的心智负担,不需要自己去构造参数以及遍历所有的参数组合,跟随着推荐的用例去补全即可。

同时针对我们前面提到的前后端协议分散在各个地方,且接口与文档不一致的问题,我们通过线上流量对请求参数和请求回包的 Schema 进行持续的迭代,然后再将 Schema 反向生成 JSON, 就可以得到一份最全、最新的接口协议,同时这份协议还可以提供给客户端同学用来构造参数进行 mock 联调。

04

总结

至此,我们已经完成了整个后台接口自动化测试系统的搭建,并完成了预设的全部目标:

  • 集成 JSON Schema 和 JSONPath 这两个组件,实现了一个无代码以及用例跟测试服务分离的自动化测试系统;

  • 通过用例的组合以及参数池构造实现了场景测试和用例间变量引用;

  • 支持了多种定制化的调度方案,并接入到上线系统流程中;

  • 打通 HTTP 和 RPC 接口访问,结合业务架构极大降低了接入 RPC 用例的成本;

  • 通过用例自动化生成进一步降低用例管理成本,快速提高了自动化测试的覆盖率。

对于旧用例系统上的数据,我们花费了将近两周,将数千行测试代码、将近一千条校验规则全部迁移到新的自动化测试平台上,得到了150+的新用例,并且校验的规则变成了150+的 JSON Schema,不需要维护任何一行代码,就得到了比之前更完善的全字段校验规则覆盖。

此外,我们通过用例发现和用例生成,生成了8000+的用例,实现了读接口100%用例覆盖,并多次辅助发现线上异常数据问题,在用户还未感知前就已经将问题扼杀在摇篮之中。

笔者认为,本文最重要的并不是对各种工具的集成和使用,100% 的用例覆盖也并非本文的最终目标。各种开源和付费工具数不胜数,只要舍得投入人力 100% 的用例覆盖也并非难事。本文真正重要的是提出了一种通用的测试框架架构,以及基于线上流量分析得到了一种测试覆盖率的度量方案

秉持着这种思路,上文中我们提到的调度系统、用例执行 MQ、校验工具、测试告警系统、流量采集系统、用例生成系统,都可以基于业务灵活调整,低成本实现大规模用例覆盖。以上是本次分享的全部内容,如果觉得内容有用,欢迎分享转发。

-End-

原创作者|柯宗言

技术责编|许阳寅、罗国佳

c11111b563d919b3082c4cbb215ac875.png

各位开发者都遇到过什么样头疼的 BUG,欢迎在评论区分享讨论。我们将选取1则最有意义的分享,送出腾讯云开发者-手腕垫1个(见下图)。6月26日中午12点开奖。

b7ddffc6fd9600411a8b8a6a698ca0ec.png

126ea007b2e2a537fe8d081b3f26ecf5.png

05313c482f89ba6340b99e8bc770b14b.png

1ebbccae1a0b1539c05c89d1ab548ffa.png

a084d856c233f982d4004ae32b5b2ad5.png

关注并星标腾讯云开发者

第一时间看鹅厂技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/666078.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于iOS16 以后屏幕旋转不得不说的事

由于笔者最近刚完成了一个强制屏幕横屏的需求 所以 顺便记录一下 实现过程中遇到 block点 也为广大的iOS开发者做一个笔记: 废话不多说直接上代码 //适配iOS16.0的横竖屏方法public static func switchInterfaceWtihIos16(orientation: UIInterfaceOrientation , o…

墨水屏服务更新及测试

一、更新墨水屏服务 ①删除tomcat/webapps/esls_new 缓存目录 ②替换新的esls_new.war ③重启tomcat,等待war包解压完成 ④修改数据库配置applicationContext-common.xml和回调接口配置urlConfig.properties ⑤重启tomcat 重启tomcat: tomcat/bin/shutdown.s…

我们还需要 SRE 吗?

在 「一文讲透研发,SRE,运维,DevOps 的区别」里,我们讲了几大工种的区别,这篇我们重点讲一下 SRE (Site Reliability Engineering)。 SRE 的兴起 SRE 最早起源于 2003,由 Google 提出。SRE 既是一种理念&a…

Linux Vim三种工作模式(命令模式、输入模式和编辑模式)详解

Linux 系统中所有的内容都以文件的形式进行存储,当在命令行下更改文件内容时,常会用到文本编辑器。 我们首选的文本编辑器是 Vim。使用 Vim 编辑文件时,存在 3 种工作模式,分别是命令模式、输入模式和编辑模式,这 3 种…

一文讲透研发,SRE,运维,DevOps 的区别

研发,SRE ,运维是工种,而 DevOps 是体系。如果拿足球来打比方,研发,SRE ,运维对应的就是前锋,中场,后卫这样的位置,而 DevOps 则是诸如 4-3-3 这样的阵型。 研发 也叫研…

聊聊如何独立使用ribbon实现业务客户端负载均衡

前言 ribbon是Netflix开源的客户端负载均衡工具,ribbon实现一系列的负载均衡算法,通过这些负载均衡算法去查找相应的服务。ribbon被大家所熟知,可能是来源于spring cloud,今天就来聊聊如何单独使用ribbon来实现业务客户端负载均衡…

我心中的编程语言之王:Python

我心中的编程语言之王:Python 在当今日益发展的信息技术领域,编程语言的地位愈发重要。它们是构建现代软件和应用的基石,也是实现科技进步的关键工具。在众多编程语言中,Python 以其简单、易用、高效等诸多优点,成为了…

Dubbo架构分层总结

进来闲来无事看了些有关dubbo源码的书籍和《极客时间》何辉老师的课程,由于知识点比较碎,遂以笔记的方式纪录,毕竟好记性不如烂笔头,也希望对感情趣的同学提供点帮助 假设你是个新手开发者,可能只是简单使用过dubbo框…

数字孪生世界建设核心能力:数据治理能力

随着世界经济由工业经济向数字经济转型,数据逐步成为关键的生产要素,企业开始将数据作为一种战略资产进行管理。数据从业务中产生,在IT系统中承载,要对数据进行有效治理,需要业务充分参与,IT系统确保遵从&a…

前端开发必须要知道的package.json文件

前言 package.json 文件是一个 Node.js 项目的配置文件,用于描述项目的元数据信息(如名称、版本、作者、依赖等),以及运行和构建该项目所需的脚本命令。 在项目开发过程中, package.json 文件的维护和更新是非常重要…

Axure8 零基础操作入门

参考:黑马产品经理课程 视频资源:day1&day2,Axure部分 Axure8常用功能 选择/缩放 选择 包含选中:全部选中才有效(避免误操作,建议使用这个)相交选中:相交即全选中 缩放 元件等…

PHP开发工具22-PHP中安装和使用xdebug

文章目录 前言配置详解总结 前言 本文已收录于PHP全栈系列专栏:PHP快速入门与实战 作为一个程序员,千万不要说你没有用过debug工具,不然有点说不过去。xdebug是PHP语言一个强大的利器,用他可以做很多事情。 xdebug是PHP开发者常…

提升编程效率:你不能错过的18款VS Code扩展

微信搜索 【大迁世界】, 我会第一时间和你分享前端行业趋势,学习途径等等。 本文 GitHub https://github.com/qq449245884/xiaozhi 已收录,有一线大厂面试完整考点、资料以及我的系列文章。 快来免费体验ChatGpt plus版本的,我们出的钱 体验地…

LTV-5341-ASEMI代理台湾光宝高速光耦LTV-5341

编辑:ll LTV-5341-ASEMI代理台湾光宝高速光耦LTV-5341 型号:LTV-155E 品牌:光宝 封装:LSOP-5 引脚数量:5 类型:光耦 特性:台湾光宝、IGBT驱动器、储能专用光耦\高速光耦 封装…

pnpm项目运行启动以及如何迁移到内网

1.迁移前的准备 首先看对node版本和pnpm版本的要求是什么,我的是自己电脑(windows系统)和内网电脑(windows系统)上的环境一致的 我的项目要求是 1.node版本 16.20.0 2.pnpm版本 8.6.2 需要先将node 和 pnpm 安装好相应…

今年前改BUG,下午就被通知在改进优化了

内卷可以说是 2023 年最火的一个词了。2022 年刚开始,在很多程序员网站看到很多 Java 程序员的 2023 年度总结都是:Java 越来越卷了(手动狗头),2023 年是被卷的一年。前有几百万毕业生虎视眈眈,后有在职人员…

slam十四讲 03 Eigen实践之三维空间刚体运动

目录 1 初始化 2 旋转空间中的向量 3 欧拉角 4 变换矩阵 5 四元素 完整程序 1 初始化 旋转的两种办法: (1)旋转矩阵:a Ra, a R^T a, 旋转矩阵的特性:是一个行列式为1的正交矩阵. 三维空间的旋转是3x3矩阵&am…

基于SpringBoot的校园请假管理系统

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 校园请假信息管理系统…

php质量检查工具 phpmd的使用

PHPMD简介 团队在使用php-cs-fixer 代码格式自动式化工具之后,在格式,代码错误等方面带来了很大便利,不过在命名,代码质量,代码复杂度,缺少一些检查,在网上搜索后,发现PHPMD 一个PHP代码静态分析工具. 安装 官方网站 github 你可以直接到下载页面封装好的 phar 包&#xff1…

云原生数据库受到青睐,亚马逊云科技数据库提供多项功能

小小的改变,标志一个新时代的全面开启,一个数据库的云原生时代。前不久,Gartner公布了一组数据,引起了不小的讨论度。在2022年全球数据库管理系统的市场份额排名中,作为纯云厂商的亚马逊云科技,超越了老牌传…