VanillaNet实战:使用VanillaNet实现图像分类(二)

news2024/11/27 17:37:47

文章目录

  • 训练部分
    • 导入项目使用的库
    • 设置随机因子
    • 设置全局参数
    • 图像预处理与增强
    • 读取数据
    • 设置Loss
    • 设置模型
    • 设置优化器和学习率调整算法
    • 设置混合精度,DP多卡,EMA
    • 定义训练和验证函数
      • 训练函数
      • 验证函数
      • 调用训练和验证方法
  • 运行以及结果查看
  • 测试
  • 热力图可视化展示
  • 完整的代码

在上一篇文章中完成了前期的准备工作,见链接:
VanillaNet实战:使用VanillaNet实现图像分类(一)
这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.vanillanet import vanillanet_10
from torch.autograd import Variable
from torchvision import datasets
torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0,1"

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数

if __name__ == '__main__':
    #创建保存模型的文件夹
    file_dir = 'checkpoints/vanilla/'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir,exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    model_lr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 600
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    use_amp = True  # 是否使用混合精度
    use_dp = True #是否开启dp方式的多卡训练
    classes = 12
    resume ='checkpoints/vanilla/model_2_36.307.pth'
    CLIP_GRAD = 5.0
    Best_ACC = 0 #记录最高得分
    use_ema=True
    model_ema_decay=0.9998
    start_epoch=1
    seed=1
    seed_everything(seed)

设置存放权重文件的文件夹,如果文件夹存在删除再建立。

接下来,设置全局参数,比如:学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。
注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

 file_dir = 'checkpoints/biformer'

这是存放seaformer模型的路径。

图像预处理与增强

   # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
    ])
    mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

 transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

这里设置为计算mean和std。
这里注意下Resize的大小,由于选用的VanillaNet模型输入是224×224的大小,所以要Resize为224×224。

读取数据

   # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, pin_memory=True,shuffle=True,drop_last=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, pin_memory=True,shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代。pin_memory设置为True,可以加快运行速度。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPU
    criterion_train = SoftTargetCrossEntropy()
    criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

  	#设置模型
    model_ft = vanillanet_10(pretrained=True,num_classes=classes,drop_rate=0.5)

    if resume:
        model=torch.load(resume)
        print(model)
        # print(model['state_dict'].keys())
        model_ft.load_state_dict(model['state_dict'])
        Best_ACC=model['Best_ACC']
        start_epoch=model['epoch']+1
    model_ft.to(DEVICE)
  • 设置模型为vanillanet_10,pretrained设置为true,表示加载预训练模型,不过由于VanillaNet的预训练模型放在了google网盘上,我没有办法下载,所以没有使用预训练,num_classes设置为当前数据集的类别数。
  • 如果resume为True,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch.

设置优化器和学习率调整算法

   # 选择简单暴力的Adam优化器,学习率调低
   optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)
   cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:
        scaler = torch.cuda.amp.GradScaler()
    if torch.cuda.device_count() > 1 and use_dp:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model_ft = torch.nn.DataParallel(model_ft)
    if use_ema:
        model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device=DEVICE,
            resume=resume)
    else:
        model_ema=None
  • use_amp为True,则开启混合精度训练,声明pytorch自带的混合精度 torch.cuda.amp.GradScaler()。
  • 检测可用显卡的数量,如果大于1,并且开启多卡训练的情况下,则要用torch.nn.DataParallel加载模型,开启多卡训练。
  • 如果使用ema,则注册ema
    注:torch.nn.DataParallel方式,默认不能开启混合精度训练的,如果想要开启混合精度训练,则需要在模型的forward前面加上@autocast()函数。

在这里插入图片描述

如果不开启混合精度则要将@autocast()去掉,否则loss一直试nan。

定义训练和验证函数

训练函数

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):
    model.train()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), Variable(target).to(device,                                                                                 non_blocking=True)
        samples, targets = mixup_fn(data, target)
        output = model(samples)
        optimizer.zero_grad()
        if use_amp:
            with torch.cuda.amp.autocast():
                loss = torch.nan_to_num(criterion_train(output, targets))
            scaler.scale(loss).backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            # Unscales gradients and calls
            # or skips optimizer.step()
            scaler.step(optimizer)
            # Updates the scale for next iteration
            scaler.update()
        else:
            loss = criterion_train(output, targets)
            loss.backward()
            # torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            optimizer.step()

        if model_ema is not None:
            model_ema.update(model)
        torch.cuda.synchronize()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        loss_meter.update(loss.item(), target.size(0))
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))
    ave_loss =loss_meter.avg
    acc = acc1_meter.avg
    print('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))
    return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    val_list = []
    pred_list = []
    for data, target in test_loader:
        for t in target:
            val_list.append(t.data.item())
        data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)
        output = model(data)
        loss = criterion_val(output, target)
        _, pred = torch.max(output.data, 1)
        for p in pred:
            pred_list.append(p.data.item())
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
    acc = acc1_meter.avg
    print('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(
        loss_meter.avg,  acc,  acc5_meter.avg))
    if acc > Best_ACC:
        if isinstance(model, torch.nn.DataParallel):
            torch.save(model.module, file_dir + '/' + 'best.pth')
        else:
            torch.save(model, file_dir + '/' + 'best.pth')
        Best_ACC = acc
    if isinstance(model, torch.nn.DataParallel):
        state = {
            'epoch': epoch,
            'state_dict': model.module.state_dict(),
            'Best_ACC':Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.module.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    else:
        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'Best_ACC': Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证
    is_set_lr = False
    log_dir = {}
    train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []
    if resume and os.path.isfile(file_dir+"result.json"):
        with open(file_dir+'result.json', 'r', encoding='utf-8') as file:
            logs = json.load(file)
            train_acc_list = logs['train_acc']
            train_loss_list = logs['train_loss']
            val_acc_list = logs['val_acc']
            val_loss_list = logs['val_loss']
            epoch_list = logs['epoch_list']
    for epoch in range(start_epoch, EPOCHS + 1):
        epoch_list.append(epoch)
        log_dir['epoch_list'] = epoch_list
        train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)
        train_loss_list.append(train_loss)
        train_acc_list.append(train_acc)
        log_dir['train_acc'] = train_acc_list
        log_dir['train_loss'] = train_loss_list
        if use_ema:
            val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)
        else:
            val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)
        val_loss_list.append(val_loss)
        val_acc_list.append(val_acc)
        log_dir['val_acc'] = val_acc_list
        log_dir['val_loss'] = val_loss_list
        log_dir['best_acc'] = Best_ACC
        with open(file_dir + '/result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(log_dir))
        print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))
        if epoch < 600:
            cosine_schedule.step()
        else:
            if not is_set_lr:
                for param_group in optimizer.param_groups:
                    param_group["lr"] = 1e-6
                    is_set_lr = True
        fig = plt.figure(1)
        plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')
        # 显示图例
        plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')
        plt.legend(["Train Loss", "Val Loss"], loc="upper right")
        plt.xlabel(u'epoch')
        plt.ylabel(u'loss')
        plt.title('Model Loss ')
        plt.savefig(file_dir + "/loss.png")
        plt.close(1)
        fig2 = plt.figure(2)
        plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')
        plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')
        plt.legend(["Train Acc", "Val Acc"], loc="lower right")
        plt.title("Model Acc")
        plt.ylabel("acc")
        plt.xlabel("epoch")
        plt.savefig(file_dir + "/acc.png")
        plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:

在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

VanillaNet测试结果:

请添加图片描述

请添加图片描述

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

VanillaNet_demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os
from models.vanillanet import vanillanet_10


classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.51819474, 0.5250407, 0.4945761], std=[0.24228974, 0.24347611, 0.2530049])
])

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_ft = vanillanet_10(num_classes=12, drop_rate=0.5)

model=torch.load('checkpoints/vanilla/best.pth')
model.switch_to_deploy()
model.eval()
model.to(DEVICE)

path = 'test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 加载model,switch_to_deploy函数,切换成推理模式,进一步提高运行速度,然后将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

热力图可视化展示

新建脚本cam_image.py,插入如下代码:


import argparse
import os
import cv2
import numpy as np
import torch
from pytorch_grad_cam import GradCAM, \
    ScoreCAM, \
    GradCAMPlusPlus, \
    AblationCAM, \
    XGradCAM, \
    EigenCAM, \
    EigenGradCAM, \
    LayerCAM, \
    FullGrad
from pytorch_grad_cam import GuidedBackpropReLUModel
from pytorch_grad_cam.utils.image import show_cam_on_image, \
    deprocess_image, \
    preprocess_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget

import timm
from torch.autograd import Variable


def reshape_transform_resmlp(tensor, height=14, width=14):
    result = tensor.reshape(tensor.size(0),
                            height, width, tensor.size(2))

    result = result.transpose(2, 3).transpose(1, 2)
    return result


def reshape_transform_swin(tensor, height=7, width=7):
    result = tensor.reshape(tensor.size(0),
                            height, width, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def reshape_transform_vit(tensor, height=14, width=14):
    result = tensor[:, 1:, :].reshape(tensor.size(0),
                                      height, width, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--use-cuda', action='store_true', default=False,
                        help='Use NVIDIA GPU acceleration')
    parser.add_argument(
        '--image-path',
        type=str,
        default="./test/0bf7bfb05.png",
        help='Input image path')
    parser.add_argument(
        '--output-image-path',
        type=str,
        default=None,
        help='Output image path')
    parser.add_argument(
        '--model',
        type=str,
        default='vanillanet',
        help='model name')
    parser.add_argument('--aug_smooth', action='store_true',
                        help='Apply test time augmentation to smooth the CAM')
    parser.add_argument(
        '--eigen_smooth',
        action='store_true',
        help='Reduce noise by taking the first principle componenet'
             'of cam_weights*activations')
    parser.add_argument('--method', type=str, default='gradcam++',
                        choices=['gradcam', 'gradcam++',
                                 'scorecam', 'xgradcam',
                                 'ablationcam', 'eigencam',
                                 'eigengradcam', 'layercam', 'fullgrad'],
                        help='Can be gradcam/gradcam++/scorecam/xgradcam'
                             '/ablationcam/eigencam/eigengradcam/layercam')

    args = parser.parse_args()
    args.use_cuda = args.use_cuda and torch.cuda.is_available()
    if args.use_cuda:
        print('Using GPU for acceleration')
    else:
        print('Using CPU for computation')

    return args


if __name__ == '__main__':
    args = get_args()
    methods = \
        {"gradcam": GradCAM,
         "scorecam": ScoreCAM,
         "gradcam++": GradCAMPlusPlus,
         "ablationcam": AblationCAM,
         "xgradcam": XGradCAM,
         "eigencam": EigenCAM,
         "eigengradcam": EigenGradCAM,
         "layercam": LayerCAM,
         "fullgrad": FullGrad}

    DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = torch.load('checkpoints/vanilla/best.pth', map_location='cpu')
    model.switch_to_deploy()
    reshape_transform = None
    print(model)
    print(model.stages[-1])
    if 'vanillanet' in args.model:
        target_layers = [model.stages[-1]]

    print(target_layers)
    model.eval()
    model.to(DEVICE)
    img_path = args.image_path
    if args.image_path:
        img_path = args.image_path
    else:
        import requests

        image_url = 'http://146.48.86.29/edge-mac/imgs/n02123045/ILSVRC2012_val_00023779.JPEG'
        img_path = image_url.split('/')[-1]
        if os.path.exists(img_path):
            img_data = requests.get(image_url).content
            with open(img_path, 'wb') as handler:
                handler.write(img_data)

    if args.output_image_path:
        save_name = args.output_image_path
    else:
        img_type = img_path.split('.')[-1]
        it_len = len(img_type)
        save_name = img_path.split('/')[-1][:-(it_len + 1)]
        save_name = save_name + '_' + args.model + '.' + img_type

    img = cv2.imread(img_path, 1)
    img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
    if args.model == 'resize':
        cv2.imwrite(save_name, img)
    else:
        rgb_img = img[:, :, ::-1]
        rgb_img = np.float32(rgb_img) / 255
        input_tensor = Variable(preprocess_image(rgb_img,
                                                 mean=[0.485, 0.456, 0.406],
                                                 std=[0.229, 0.224, 0.225]), requires_grad=True).to(DEVICE)
        targets = None
        cam_algorithm = methods[args.method]
        with cam_algorithm(model=model,
                           target_layers=target_layers,
                           use_cuda=args.use_cuda,
                           reshape_transform=reshape_transform,
                           ) as cam:

            cam.batch_size = 1
            grayscale_cam = cam(input_tensor=input_tensor,
                                targets=targets,
                                aug_smooth=args.aug_smooth,
                                eigen_smooth=args.eigen_smooth)

            grayscale_cam = grayscale_cam[0, :]
            cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
            cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)

        cv2.imwrite(save_name, cam_image)

对get_args函数的参数进行设置:

  • use-cuda:是否使用cuda,如果在没有GPU的电脑上调试时,将其设置为False。
  • image-path:待测图片的路径,这个是必填项。
  • model:必填项,默认值:biformer。

效果如下图所示:

请添加图片描述

完整的代码

完整的代码:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/87902285

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/664922.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【掌握Spring事务管理】深入理解事务传播机制的秘密

&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔&#x1f93a;&#x1f93a;&#x1f93a; 目录 1.Spring 中事务的实现方式 1.1 Spring 编程式…

第八十天学习记录:计算机硬件技术基础:80486微处理器的指令系统

80486微处理器的寻址方式 要使微处理器能够完成指令规定的操作&#xff0c;则指令中须包含2种信息&#xff0c;一是执行什么操作&#xff1b;二是该操作所涉及的数据在哪里&#xff1b;三是结果存于何处&#xff0c;故指令通常操作由操作码字段和操作数字组成&#xff0c;其书…

chatgpt赋能python:Python的抹零功能介绍及使用方法

Python的抹零功能介绍及使用方法 Python是一种广泛使用的编程语言&#xff0c;而其抹零功能是在进行浮点数操作时非常有用的。在本文中&#xff0c;我们将介绍python中抹零的概念、使用方法以及注意事项&#xff0c;以帮助大家更好地使用python中的抹零功能。 什么是抹零&…

【MarkDown】CSDN Markdown之时间轴图timeline详解

文章目录 时间轴图一个关于时间轴图的例子语法分组长时间段或事件文本换行时间段和事件文本样式自定义颜色方案主题基础主题森林主题黑色主题默认主题中性主题 与库或网站集成 时间轴图 时间轴图&#xff1a;现在这是一个实验性的图表。语法和属性可能会在未来版本中更改。除了…

渣土车未苫盖识别系统 yolov8

渣土车未苫盖识别系统通过yolov8python&#xff0c;渣土车未苫盖识别系统对经过的渣土车进行实时监测&#xff0c;当检测到有渣土车未能及时苫盖时&#xff0c;将自动发出警报提示现场管理人员及时采取措施。Yolo模型采用预定义预测区域的方法来完成目标检测&#xff0c;具体而…

chatgpt赋能python:Python抽人代码:如何优化你的抽奖过程?

Python抽人代码&#xff1a;如何优化你的抽奖过程&#xff1f; 简介 抽奖是在网站上进行的一项非常常见的活动。随着技术的发展&#xff0c;抽奖活动的方式也越来越多样化。在这些活动中&#xff0c;人们喜欢使用抽人软件或代码来提高效率并确保随机性。这在Python中是相当简…

chatgpt赋能python:Python查找第二大的数——从入门到实战

Python查找第二大的数——从入门到实战 Python是一门非常强大的编程语言&#xff0c;不仅支持基本的编程技巧&#xff0c;也支持各种复杂的算法和数据结构。本篇文章将介绍如何通过Python编写一个程序&#xff0c;来实现查找数组中第二大的数。 环境准备 想要运行这个程序&a…

SQL 函数:concat函数、concat_ws()函数、group_concat()

SQL 函数&#xff1a;concat函数、concat_ws()函数、group_concat()函数(转载) concat()函数 功能&#xff1a;将多个字符串连接成一个字符串。 语法&#xff1a;concat(str1, str2,…) 返回结果为连接参数产生的字符串&#xff0c;如果有任何一个参数为null&#xff0c;则返…

java - 报错解决集合

ssm-java学习笔记 java.lang.NoSuchMethodException: org.cjh.bean.Dept.<init>()Invalid bound statement (not found)错误解决方法动态sql if java.lang.IndexOutOfBoundsException: Index: 5, Size: 5Failed to determine a suitable driver classjava.sql.SQLExcepti…

第十二章 sys模块

1. sys模块介绍 什么是Python 解释器 当编写Python 代码时&#xff0c;通常都会得到一个包含Python 代码的以.py 为扩展名的文件。要运行编写的代码&#xff0c;就需要使用Python 解释器去执行.py 文件。因此&#xff0c;Python 解释器就是用来执行Python 代码的一种工具。常…

Windows下Nacos的配置与使用

一、什么是 Nacos 以下引用来自 nacos.io Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service的首字母简称&#xff0c;一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。 Nacos 致力于帮助您发现、配置和管理微服务。Nacos 提供了一组简单易用…

19使用MATLAB中的BP神经网络来做字母识别

1.简述 学习目标&#xff1a; 学习BP神经网络字母识别 字符识别应用非常广泛&#xff0c;比如车辆牌照自动识别和手写识别等。我们采用BP网络对26个英文字母进行识别&#xff0c;首先将26个字母中每一个字母都通过75的方格进行数字化处理&#xff0c;并用一个向量表示&#x…

中间件 -zookeeper

三连支持 一起鼓励 一起进步 zookeeper 文章目录 一、概述1.Leader 角色2.Follower 角色3.数据同步4. 2PC提交5. Observer 角色6. leader 选举7. 集群组成6. 惊群效应 二、Curator三、应用场景总结 一、概述 首先&#xff0c;在分布式架构中&#xff0c;任何的节点都不能以单点…

支持记录和审计上传/下载的文件内容,支持控制用户连接资产的方式,JumpServer堡垒机v3.4.0发布

2023年6月19日&#xff0c;JumpServer开源堡垒机正式发布v3.4.0版本。在这一版本中&#xff0c;JumpServer新增支持多种资源选择策略&#xff0c;包括用户登录、命令过滤、资产登录和连接方式&#xff1b;支持记录和审计上传/下载的文件内容&#xff0c;进一步提升系统的安全性…

linux(线程同步和互斥)

目录&#xff1a; 1.为什么需要同步和互斥 2.明确一些概念 3.实现一个抢票程序 4.理解加锁和解锁是原子的呢&#xff1f;&#xff1f; ------------------------------------------------------------------------------------------------------------------------- 1.为什么…

哈工大计算机网络传输层详解之:流水线机制与滑动窗口协议

哈工大计算机网络传输层详解之&#xff1a;流水线机制与滑动窗口协议 在上一节中我们逐步分析了可靠传输协议的设计过程&#xff0c;最后讲到rdt3.0的设计和实现机制。但是rdt3.0为了实现可靠性&#xff0c;牺牲了很大一部分性能&#xff0c;其中最主要的原因就在于停止等待协…

23.ELman神经网络预测数据

1.简述 学习目标&#xff1a;ELman神经网络预测数据 Elman网络介绍 神经网络是一个庞大的体系和概念&#xff0c;根据处理信息的不同方式来区分不同的network。比如根据处理信息结果的传递方向&#xff0c;分前馈型与反馈型。前馈型网络会根据输出数值来调整网络的参数&#xf…

LangChain 中文入门教程

为了便于阅读&#xff0c;已生成gitbook&#xff1a;LangChain 中文入门教程 - LangChain 的中文入门教程 github地址&#xff1a;https://github.com/liaokongVFX/LangChain-Chinese-Getting-Started-Guide 加了个 CHANGELOG,更新了新的内容我会写在这里&#xff0c;方便之前看…

2023-06-19 Untiy进阶 C#知识补充2——C#版本与Unity的关系

文章目录 一、Unity 与 C# 版本二、Unity 的 .Net API 兼容级别 一、Unity 与 C# 版本 Unity 版本C# 版本Unity 2021.2C# 9Unity 2020.3C# 8Unity 2019.4C# 7.3Unity 2017C# 6Unity 5.5C# 4 ​ 更多信息可以在 Unity 官网说明查看&#xff1a;Unity - Manual: C# compiler (u…

Git的使用方法

文章目录 Git简介Git用法上传到gitee上 Git简介 简单来说&#xff0c;Git就像一个日志一样&#xff0c;可以帮你记录你对文本文件的修改&#xff0c;但他的功能又强于日志&#xff0c;不仅可以记录&#xff0c;还可以帮你存储那些你对文本文件的修改&#xff0c;当你想要找回之…