io.netty学习(二)Netty 架构设计

news2024/10/5 13:47:26

目录

前言

Selector 模型

SelectableChannel

Channel 注册到 Selector

SelectionKey

遍历 SelectionKey

事件驱动

Channel

回调

Future

事件及处理器

责任链模式

责任链模式的优缺点

ChannelPipeline

将事件传递给下一个处理器

总结


前言

上一篇文章,我们对 Netty做了一个基本的概述,知道什么是Netty以及Netty的简单应用。

本篇文章我们就来说说Netty的架构设计,解密高并发之道。学习一个框架之前,我们首先要弄懂它的设计原理,然后再进行深层次的分析。

接下来我们从三个方面来分析 Netty 的架构设计。

io.netty学习使用汇总

Selector 模型

Java NIO 是基于 Selector 模型来实现非阻塞的 I/O。Netty 底层是基于 Java NIO 实现的,因此也使用了 Selector 模型。

Selector 模型解决了传统的阻塞 I/O 编程一个客户端一个线程的问题。Selector 提供了一种机制,用于监视一个或多个 NIO 通道,并识别何时可以使用一个或多个 NIO 通道进行数据传输。这样,一个线程就可以管理多个通道,从而管理多个网络连接。

Selector 提供了选择执行已经就绪的任务的能力。从底层来看,Selector 会轮询 Channel 是否已经准备好执行每个 I/O 操作。Selector 允许单线程处理多个 Channel 。Selector 是一种多路复用的技术。

SelectableChannel

并不是所有的 Channel 都是可以被 Selector 复用的,只有抽象类 SelectableChannel的子类才能被 Selector 复用。

例如,FileChannel 就不能被选择器复用,因为 FileChannel 不是SelectableChannel的子类。

为了与 Selector 一起使用,SelectableChannel必须首先通过register方法来注册此类的实例。此方法返回一个新的SelectionKey对象,该对象表示Channel已经在Selector进行了注册。向Selector注册后,Channel将保持注册状态,直到注销为止。

一个 Channel 最多可以使用任何一个特定的 Selector 注册一次,但是相同的 Channel 可以注册到多个 Selector 上。可以通过调用 isRegistered方法来确定是否向一个或多个 Selector 注册了 Channel。

SelectableChannel可以安全的供多个并发线程使用。

Channel 注册到 Selector

使用 SelectableChannelregister方法,可将Channel注册到Selector。方法接口源码如下:

    public final SelectionKey register(Selector sel, int ops)
        throws ClosedChannelException {
        return register(sel, ops, null);
    }
    public abstract SelectionKey register(Selector sel, int ops, Object att) throws ClosedChannelException;

其中各选项说明如下:

  • sel:指定 Channel 要注册的 Selector

  • ops : 指定 Selector需要查询的通道的操作。

一个Channel在Selector注册其代表的是一个SelectionKey事件,SelectionKey的类型包括:

  • OP_READ:可读事件;值为:1<<0

  • OP_WRITE:可写事件;值为:1<<2

  • OP_CONNECT:客户端连接服务端的事件(tcp连接),一般为创建SocketChannel客户端channel;值为:1<<3

  • OP_ACCEPT:服务端接收客户端连接的事件,一般为创建ServerSocketChannel服务端channel;值为:1<<4

具体的注册代码如下:

 // 1.创建通道管理器(Selector)
 Selector selector = Selector.open();

 // 2.创建通道ServerSocketChannel
 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 // 3.channel要注册到Selector上就必须是非阻塞的,所以FileChannel是不可以使用Selector的,因为FileChannel是阻塞的
 serverSocketChannel.configureBlocking(false);

 // 4.第二个参数指定了我们对 Channel 的什么类型的事件感兴趣
 SelectionKey key = serverSocketChannel.register(selector , SelectionKey.OP_READ);

 // 也可以使用或运算|来组合多个事件,例如
 SelectionKey key = serverSocketChannel.register(selector , SelectionKey.OP_READ | SelectionKey.OP_WRITE);

值得注意的是:一个 Channel 仅仅可以被注册到一个Selector 一次, 如果将 Channel 注册到 Selector 多次, 那么其实就是相当于更新 SelectionKey的 interest set

SelectionKey

Channel 和 Selector 关系确定后之后,并且一旦 Channel 处于某种就绪状态,就可以被选择器查询到。这个工作再调用 Selector 的 select 方法完成。select 方法的作用,就是对感兴趣的通道操作进行就绪状态的查询。

// 当注册事件到达时,方法返回,否则该方法会一直阻塞
selector.select();

SelectionKey 包含了 interest 集合,代表了所选择的感兴趣的事件集合。可以通过 SelectionKey 读写 interest 集合,例如:

// 返回当前感兴趣的事件列表
int interestSet = key.interestOps();

// 也可通过interestSet判断其中包含的事件
boolean isInterestedInAccept  = interestSet & SelectionKey.OP_ACCEPT;
boolean isInterestedInConnect = interestSet & SelectionKey.OP_CONNECT;
boolean isInterestedInRead    = interestSet & SelectionKey.OP_READ;
boolean isInterestedInWrite   = interestSet & SelectionKey.OP_WRITE;    

// 可以通过interestOps(int ops)方法修改事件列表
key.interestOps(interestSet | SelectionKey.OP_WRITE);

可以看到,用位与操作 interest 集合和给定的 SelectionKey 常量,可以确定某个确定的事件是否在 interest 集合中。

SelectionKey 包含了ready集合。ready 集合是通道已经准备就绪的操作的集合。在一次选择之后,会首先访问这个 ready 集合。可以这样访问 ready 集合:

int readySet = key.readyOps();

// 也可通过四个方法来分别判断不同事件是否就绪
key.isReadable();    //读事件是否就绪
key.isWritable();    //写事件是否就绪
key.isConnectable(); //客户端连接事件是否就绪
key.isAcceptable();  //服务端连接事件是否就绪

我们可以通过SelectionKey来获取当前的channelselector

//返回当前事件关联的通道,可转换的选项包括:`ServerSocketChannel`和`SocketChannel`
Channel channel = key.channel();

//返回当前事件所关联的Selector对象
Selector selector = key.selector();

可以将一个对象或者其他信息附着到 SelectionKey 上,这样就能方便地识别某个特定的通道。

key.attach(theObject);
Object attachedObj = key.attachment();

还可以在用 register()方法向 Selector 注册 Channel 的时候附加对象。

SelectionKey key = channel.register(selector, SelectionKey.OP_READ, theObject);

遍历 SelectionKey

一旦调用了 select 方法,并且返回值表明有一个或更多个通道就绪了,然后可以通过调用 selector的 selectedKey()方法,访问 SelectionKey 集合中的就绪通道,如下所示:

Set<SelectionKey> selectionKeys = selector.selectedKeys();

可以遍历这个已选择的键集合来访问就绪的通道,代码如下:

// 获取监听事件
Set<SelectionKey> selectionKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = selectionKeys.iterator();
// 迭代处理
while (iterator.hasNext()) {
    // 获取事件
    SelectionKey key = iterator.next();
    // 移除事件,避免重复处理
    iterator.remove();
    // 可连接
    if (key.isAcceptable()) {
        ...
    } 
    // 可读
    if (key.isReadable()) {
        ...
    }
    //可写
    if(key.isWritable()){
        ...                
    }
}

事件驱动

Netty是一款异步的事件驱动的网络应用程序框架。在 Netty 中,事件是指对某些操作感兴趣的事。例如,在某个Channel注册了 OP_READ,说明该 Channel 对读感兴趣,当 Channel 中有可读的数据时,它会得到一个事件的通知。

在 Netty 事件驱动模型中包括以下核心组件。

Channel

Channel(管道)是 Java NIO 的一个基本抽象,代表了一个连接到如硬件设备、文件、网络 socket 等实体的开放连接,或者是一个能够完成一种或多种不同的I/O 操作的程序。

回调

回调 就是一个方法,一个指向已经被提供给另外一个方法的方法的引用。这使得后者可以在适当的时候调用前者,Netty 在内部使用了回调来处理事件;当一个回调被触发时,相关的事件可以被一个ChannelHandler接口处理。

例如:在上一篇文章中,Netty 开发的服务端的管道处理器代码中,当Channel中有可读的消息时,NettyServerHandler的回调方法channelRead就会被调用。

public class NettyServerHandler extends ChannelInboundHandlerAdapter {

    //读取数据实际(这里我们可以读取客户端发送的消息)
    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        System.out.println("server ctx =" + ctx);
        Channel channel = ctx.channel();
        //将 msg 转成一个 ByteBuf
        //ByteBuf 是 Netty 提供的,不是 NIO 的 ByteBuffer.
        ByteBuf buf = (ByteBuf) msg;
        System.out.println("客户端发送消息是:" + buf.toString(CharsetUtil.UTF_8));
        System.out.println("客户端地址:" + channel.remoteAddress());
    }


    //处理异常, 一般是需要关闭通道
    @Override
    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
        ctx.close();
    }
}

Future

Future 可以看作是一个异步操作的结果的占位符;它将在未来的某个时刻完成,并提供对其结果的访问,Netty 提供了 ChannelFuture 用于在异步操作的时候使用,每个 Netty 的出站 I/O 操作都将返回一个 ChannelFuture(完全是异步和事件驱动的)。

以下是一个 ChannelFutureListener使用的示例。

    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        ChannelFuture future = ctx.channel().close();
        future.addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture channelFuture) throws Exception {
                //..
            }
        });
    }

事件及处理器

在 Netty 中事件按照出/入站数据流进行分类:

入站数据或相关状态更改触发的事件包括:

  • 连接已被激活或者失活。

  • 数据读取。

  • 用户事件。

  • 错误事件,

出站事件是未来将会出发的某个动作的操作结果:

  • 打开或者关闭到远程节点的连接。

  • 将数据写或者冲刷到套接字。

每个事件都可以被分发给ChannelHandler类中的某个用户实现的方法。如下图展示了一个事件是如何被一个这样的ChannelHandler链所处理的。

ChannelHandler 为处理器提供了基本的抽象,可理解为一种为了响应特定事件而被执行的回调。

责任链模式

责任链模式(Chain of Responsibility Pattern)是一种行为型设计模式,它为请求创建了一个处理对象的链。其链中每一个节点都看作是一个对象,每个节点处理的请求均不同,且内部自动维护一个下一节点对象。当一个请求从链式的首端发出时,会沿着链的路径依次传递给每一个节点对象,直至有对象处理这个请求为止。

责任链模式的重点在这个 "链"上,由一条链去处理相似的请求,在链中决定谁来处理这个请求,并返回相应的结果。在Netty中,定义了ChannelPipeline接口用于对责任链的抽象。

责任链模式会定义一个抽象处理器(Handler)角色,该角色对请求进行抽象,并定义一个方法来设定和返回对下一个处理器的引用。在Netty中,定义了ChannelHandler接口承担该角色。

责任链模式的优缺点

优点:

  • 发送者不需要知道自己发送的这个请求到底会被哪个对象处理掉,实现了发送者和接受者的解耦。

  • 简化了发送者对象的设计。

  • 可以动态的添加节点和删除节点。

缺点:

  • 所有的请求都从链的头部开始遍历,对性能有损耗。

  • 不方便调试。由于该模式采用了类似递归的方式,调试的时候逻辑比较复杂。

使用场景:

  • 一个请求需要一系列的处理工作。

  • 业务流的处理,例如文件审批。

  • 对系统进行扩展补充。

ChannelPipeline

Netty 的ChannelPipeline设计,就采用了责任链设计模式, 底层采用双向链表的数据结构,,将链上的各个处理器串联起来。

客户端每一个请求的到来,Netty都认为,ChannelPipeline中的所有的处理器都有机会处理它,因此,对于入栈的请求,全部从头节点开始往后传播,一直传播到尾节点(来到尾节点的msg会被释放掉)。

入站事件:通常指 IO 线程生成了入站数据(通俗理解:从 socket 底层自己往上冒上来的事件都是入站)。
比如EventLoop收到selectorOP_READ事件,入站处理器调用socketChannel.read(ByteBuffer)接受到数据后,这将导致通道的ChannelPipeline中包含的下一个中的channelRead方法被调用。

出站事件:通常指 IO 线程执行实际的输出操作(通俗理解:想主动往 socket 底层操作的事件的都是出站)。
比如bind方法用意时请求server socket绑定到给定的SocketAddress,这将导致通道的ChannelPipeline中包含的下一个出站处理器中的bind方法被调用。

将事件传递给下一个处理器

处理器必须调用ChannelHandlerContext中的事件传播方法,将事件传递给下一个处理器。

入站事件和出站事件的传播方法如下图所示:

以下示例说明了事件传播通常是如何完成的:

public class MyInboundHandler extends ChannelInboundHandlerAdapter {

    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        System.out.println("Connected!");
        ctx.fireChannelActive();
    }
}

public class MyOutboundHandler extends ChannelOutboundHandlerAdapter {

    @Override
    public void close(ChannelHandlerContext ctx, ChannelPromise promise) throws Exception {
        System.out.println("Closing...");
        ctx.close(promise);
    }
}

总结

正是由于 Netty 的分层架构设计非常合理,基于 Netty 的各种应用服务器和协议栈开发才能够如雨后春笋般得到快速发展。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/664666.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1.react路由的基本使用

第一步 首先打开index.js&#xff0c;在里面引入BrowserRouter或者HashRouter&#xff0c;启用全局路由模式。 BrowserRouter与HashRouter的区别 // index.js import React from react; import ReactDOM from react-dom/client; import ./index.css; import App from ./App;…

P31[10-1]软件模拟IIC通信协议(使用stm32库函数)(内含:实物连接+IIC时序解释+硬件电路+IIC基本时序单元(起始 终止 发送接收 ))

IIC通讯分为硬件读写IIC和软件IIC,以下为软件读写IIC 实物连接如下: 解释: 软件IIC通讯,对MPU6050芯片内部的寄存器进行读写操作,。写入配置寄存器,即可对外挂模块进行配置。。读出数据寄存器,即可获取外挂模块的数据。。。 OLED第一行为设备ID号(固定,有些可能不同)…

基于Springboot+mybatis+mysql+html图书管理系统2

基于Springbootmybatismysqlhtml图书管理系统2 一、系统介绍二、功能展示1.用户登陆2.用户主页3.图书查询4.还书5.个人信息修改6.图书管理&#xff08;管理员&#xff09;7.学生管理&#xff08;管理员&#xff09;8.废除记录&#xff08;管理员&#xff09; 三、数据库四、其它…

8.compute部署neutron服务

compute节点 安装软件包 yum -y install openstack-neutron-linuxbridge ebtables ipset 修改配置文件&#xff1a;/etc/neutron/neutron.conf #查看文件属性 ll /etc/neutron/neutron.conf -rw-r----- 1 root neutron ... /etc/neutron/neutron.conf #备份配置文件 cp /e…

C语言:将一句话的单词进行倒置,标点不倒置。

题目&#xff1a; 将一句话的单词进行倒置&#xff0c;标点不倒置。&#xff08;字符数组长度不超过100&#xff09; 比如&#xff1a;I like beijing. 经过函数后变为&#xff1a;beijing. like I 思路&#xff1a; 总体思路&#xff1a; &#xff08;可以把两步顺序调换&am…

chatgpt赋能python:Python中寻找不重复字符的方法

Python中寻找不重复字符的方法 Python是一种著名界面友好、易学易用且功能强大的编程语言&#xff0c;广泛应用于各种需求中。在本篇文章中&#xff0c;我们将会讨论如何使用Python编程语言来寻找一个字符串中的不重复字符。我们将简单介绍如何实现这个过程以及为什么这个过程…

Python小白如何利用GPT4快速开发一个网站!

这个是一个全栈的项目&#xff0c;麻雀虽小&#xff0c;五脏俱全&#xff01;全程都是利用gpt4进行辅助编程搞定的。第一版其实非常快&#xff0c;大概30分钟就搞定了&#xff0c;后续就是不断的添砖加瓦&#xff0c;增加功能和优化UI。 其实很多小白都在说要学Python&#xff…

chatgpt赋能python:Python扩展库需要导入吗?重要性与结论解析

Python扩展库需要导入吗&#xff1f;重要性与结论解析 作为业内最受欢迎的编程语言之一&#xff0c;Python在数据科学、人工智能、Web开发等领域拥有大量的应用。在Python开发过程中&#xff0c;扩展库的使用是不可避免的。本文将介绍Python扩展库的重要性以及是否需要导入的问…

【Arduino】Portenta H7 板子介绍

文章目录 1. Features2. Pins Name3. Functions3.1 analogReadResolution()3.2 millis() Ref. 1. Features 2. Pins Name 3. Functions 3.1 analogReadResolution() analogReadResolution() is an extension of the Analog API for the Zero, Due, MKR family, Nano 33 (BLE …

vue3-实战-10-管理后台-权限管理之用户管理模块开发

目录 1-用户首页列表开发 1.1-需求原型分析 1.2-封装请求和数据类型 1.3-数据页面渲染和展示 1.4-点击搜索按钮搜索用户 1.5-点击重置按钮 2-新增编辑用户 2.1-原型需求分析 2.2-表单页面数据收集 2.3-页面校验规则的定义 2.4-添加用户按钮编辑按钮逻辑 2.5-保存和取…

C++个人通信录系统

背景&#xff1a; 使用C编写一个通信录程序&#xff0c;来完成作业上的一些需求。 1-提供录入个人信息、修改个人信息&#xff08;姓名和出生日期除外&#xff09;、删除个人信息等编辑功能 2-提供按姓名查询个人信息的功能 3-提供查找在5天之内过生日的人员的信息&#xf…

Gof23设计模式之工厂方法模式和抽象工厂模式

在java中&#xff0c;万物皆对象&#xff0c;这些对象都需要创建&#xff0c;如果创建的时候直接new该对象&#xff0c;就会对该对象耦合严重&#xff0c;假如我们要更换对象&#xff0c;所有new对象的地方都需要修改一遍&#xff0c;这显然违背了软件设计的开闭原则。 如果我们…

机器学习之K-Means(k均值)算法

1 K-Means介绍 K-Means算法又称K均值算法&#xff0c;属于聚类&#xff08;clustering&#xff09;算法的一种&#xff0c;是应用最广泛的聚类算法之一。所谓聚类&#xff0c;即根据相似性原则&#xff0c;将具有较高相似度的数据对象划分至同一类簇&#xff0c;将具有较高相异…

NDK使用LLVM编译Boost库给Android使用

1.下载boost库 ​ wget https://boostorg.jfrog.io/artifactory/main/release/1.71.0/source/boost_1_71_0.tar.gz​ 选择1.71.0版本 NDK版本19 ,ANDROID版本 24 进入然后后的目录 (不指定平台 默认为当前系统平台) ./bootstrap.sh --prefix=./android_build --libdir=.…

Java---阶段项目----五子棋

Java---阶段项目----五子棋 需求说明技术实现棋盘制作完整代码 需求说明 五子棋棋盘为一个1010的方格&#xff0c;五子棋玩家共为两个(A,B)&#xff0c;A在棋盘上落子后&#xff0c;B再落子&#xff0c;依次往复&#xff0c;直到一方胜利或者棋盘空间用完为止&#xff0c;判断…

StarCCM+ 命令行运行(Windows)

添加环境变量 找到启动程序的位置。找到当初安装starccm的文件夹&#xff0c;一般就是 Siemens 文件夹&#xff0c;进入会看到各版本的安装文件夹&#xff08;如果你没有安装多个版本则只有一个&#xff09;&#xff0c;然后参考下面我的路径找到相应的文件夹。在bin文件夹内可…

【openGauss简单使用---快速入门】

【openGauss简单使用---快速入门】 &#x1f53b; 一、openGauss使用&#x1f530; 1.1 连接openGauss&#x1f530; 1.2 创建数据库用户和授权&#x1f530; 1.3 创建数据库&#x1f530; 1.4 创建SCHEMA&#x1f530; 1.5 创建表 &#x1f53b; 二、总结—温故知新 &#x1f…

信息系统之网络安全方案 — “3保1评”

信息系统之网络安全方案 — “3保1评” 序&#xff1a;什么是“3评1保”&#xff1f;一、网络安全等级保护1.1 概念1.2等保发展1.3法律要求1.4分级及工作流程 二、涉密信息系统分级保护2.1概念2.2法律要求2.3分级及工作流程 三、关键信息基础设施保护3.1概念3.2关保的发展3.3法…

建立和使用Python自定义模块:打包+pip安装

文章目录 &#xff08;零&#xff09;拷目录-无法卸载&#xff08;一&#xff09;打包结构&#xff08;1.1&#xff09;__init__.py&#xff08;1.2&#xff09;setup.py &#xff08;二&#xff09;开始打包&#xff08;2.1&#xff09;命令出错&#xff1f; &#xff08;三&a…

构建高可用、高并发和高性能的微服务系统(Spring Cloud实现)

目前Java都在流行一个说词&#xff1a;高并发。 反正不管是不是&#xff0c;反正就是高并发。 谈高并发&#xff0c;我们需要知道几个名词&#xff1a; -响应时间(Response Time&#xff0c;RT)-吞吐量(Throughput)-每秒查询率QPS(Query Per Second)-每秒事务处理量TPS(Transa…