1. 遗传算法简介
遗传算法(Genetic Algorithms,GA)是一种模拟自然中生物的遗传、进化以适应环境的智能算法。由于其算法流程简单,参数较少优化速度较快,效果较好,在图像处理、函数优化、信号处理、模式识别等领域有着广泛的应用。
在遗传算法(GA)中,每一个待求问题的候选解被抽象成为种群中一个个体的基因。种群中个体基因的好坏由表示个体基因的候选解在待求问题中的所的得值来评判。种群中的个体通过与其他个体交叉产生下一代,每一代中个体均只进行一次交叉。两个进行交叉的个体有一定几率交换一个或者多个对应位的基因来产生新的后代。每个后代都有一定的概率发生变异。发生变异的个体的某一位或某几位基因会变异成其他值。最终将以个体的适应度值为概率选取个体保留至下一代。
2. 算法流程
遗传算法启发于生物的繁殖与dna的重组,本次的主角选什么呢?还是根据大家熟悉的孟德尔遗传规律选豌豆吧,选动物的话又会有人疑车,还是植物比较好,本次的主角就是它了。
遗传算法包含三个操作(算子):交叉,变异和选择操作。下面我们将详细介绍这三个操作。
大多数生物的遗传信息都储存在DNA,一种双螺旋结构的复杂有机化合物。其含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶。