【人工智能】— 神经网络、前向传播、反向传播、梯度下降、局部最小值、多层前馈网络、缓解过拟合的策略

news2024/9/20 1:01:21

【人工智能】— 神经网络、前向传播、反向传播

  • 前向传播
  • 反向传播
  • 梯度下降
  • 局部最小值
  • 多层前馈网络表示能力
  • 多层前馈网络局限
  • 缓解过拟合的策略

前向传播和反向传播都是神经网络训练中常用的重要算法。

前向传播是指将输入数据从输入层开始经过一系列的权重矩阵和激活函数的计算后,最终得到输出结果的过程。在前向传播中,神经网络会将每一层的输出作为下一层的输入,直到输出层得到最终的结果。

反向传播是指在神经网络训练过程中,通过计算损失函数的梯度,将梯度从输出层开始逆向传播到输入层,以更新每一层的权重参数。在反向传播中,通过计算梯度,可以得到每个神经元的误差,进而调整其权重和偏置,以最小化损失函数。

前向传播

在这里插入图片描述

反向传播

在这里插入图片描述

  1. 𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 = 𝑔’(𝑥𝐿)
    这个公式表示输出层对输入层的偏导数,它等于激活函数关于输入的导数,即𝑔’。

  2. 𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿−1 = 𝑊𝐿−1 · (𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 ⊙ 𝑓’(𝑊𝐿−1𝑥𝐿−1))
    这个公式表示倒数第L-1层对第L层的偏导数,它等于第L层权重矩阵𝑊𝐿−1乘以(𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 ⊙ 𝑓’(𝑊𝐿−1𝑥𝐿−1)),其中𝑓’表示激活函数的导数。

  3. 𝜕𝑙𝑜𝑠𝑠/𝜕𝑤𝐿−1 = (𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 ⊙ 𝑓’(𝑊𝐿−1𝑥𝐿−1)) · 𝑥𝐿−1
    这个公式表示对第L-1层的权重𝑤𝐿−1求偏导数,它等于(𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 ⊙ 𝑓’(𝑊𝐿−1𝑥𝐿−1))乘以第L-1层的输入𝑥𝐿−1。

这些公式描述了反向传播算法中的梯度计算过程,它们用于更新神经网络中的权重以最小化损失函数。

梯度下降

假设神经网络中只有两个参数 w 1 w_1 w1 w 2 w_2 w2。在梯度下降算法中,我们通过计算损失函数 C C C 关于参数的偏导数来确定梯度方向,并乘以学习率 η \eta η 来确定参数更新的步幅。这样反复迭代更新参数,直到达到收敛或满足停止条件。

具体步骤如下:

  1. 随机选择一个起始点 θ 0 \theta_0 θ0
  2. 计算在 θ 0 \theta_0 θ0 处的负梯度 − ∇ C ( θ 0 ) -\nabla C(\theta_0) C(θ0)
  3. 将负梯度与学习率 η \eta η 相乘。
  4. 更新参数:
    θ 0 = θ 0 − η ⋅ ∇ C ( θ 0 ) \theta_0 = \theta_0 - \eta \cdot \nabla C(\theta_0) θ0=θ0ηC(θ0)

其中, ∇ C ( θ 0 ) \nabla C(\theta_0) C(θ0) 是损失函数关于参数的偏导数组成的梯度。在二维空间中,可以表示为 ∇ C ( θ 0 ) = ( ∂ C ( θ 0 ) ∂ w 1 , ∂ C ( θ 0 ) ∂ w 2 ) \nabla C(\theta_0) = \left(\cfrac{\partial C(\theta_0)}{\partial w_1}, \cfrac{\partial C(\theta_0)}{\partial w_2}\right) C(θ0)=(w1C(θ0),w2C(θ0))

通过不断迭代更新参数,我们可以优化网络的性能,使损失函数最小化。

在这里插入图片描述
在这里插入图片描述

局部最小值

梯度下降算法并不保证能够达到全局最小值。不同的初始点 θ 0 \theta_0 θ0 可能会收敛到不同的局部最小值,因此会得到不同的结果。

这是因为神经网络的损失函数通常是非凸的,存在多个局部最小值。在非凸损失函数的情况下,梯度下降可能会陷入局部最小值而无法达到全局最小值。这就是为什么在训练神经网络时,初始点的选择非常重要。

然而,尽管梯度下降可能无法找到全局最小值,但在实际应用中,局部最小值往往已经足够好。此外,使用正则化和其他技巧可以帮助提高算法的鲁棒性,减少陷入不良局部最小值的风险。

因此,虽然非凸损失函数可能带来挑战,但梯度下降仍然是一种有效的优化方法,广泛应用于训练神经网络和其他机器学习模型中。
在这里插入图片描述

多层前馈网络表示能力

只需要一个包含足够多神经元的隐层, 多层前馈神经网络就能以任意精度逼近任意复杂度的连续函数

多层前馈网络局限

• 神经网络由于强大的表示能力, 经常遭遇过拟合. 表现为:训练误差持续降低, 但测试误差却可能上升
• 如何设置隐层神经元的个数仍然是个未决问题. 实际应用中通常使用“试错法”调整

缓解过拟合的策略

• 早停:在训练过程中, 若训练误差降低, 但验证误差升高, 则停止训练
• 正则化:在误差目标函数中增加一项描述网络复杂程度的部分, 例如连接权值与阈值的平方和

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/660375.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机网络408大题(2009-2019)

必备结构 TCP报文段结构 IP数据报结构 2009年 考察点:子网划分、路由表、路由聚合 2010年 考察点:CSMA/CD协议的相关计算 2011年 考察点:以太网帧格式、IP分组格式、IP地址和MAC地址、ARP协议、HTTP/1.1持续的非流水方式 在转发过程中&am…

Jupyter中使用Pyecharts绘制地图

背景:根据各省频率绘制地图 根据各省频率绘制地图,可以使用 Pyecharts 绘制。下面是详细的步骤: 1、安装 Pyecharts:可以通过 !pip install pyecharts 命令安装。 2、导入相关库 import pandas as pd from pyecharts import o…

设计模式之抽象工厂模式笔记

设计模式之抽象工厂模式笔记 说明Abstract Factory(抽象工厂)目录UML抽象工厂示例类图甜品抽象类甜品提拉米苏类甜品抹茶慕斯类 咖啡抽象类美式咖啡类拿铁咖啡类 甜品工厂接口美式风味的甜品工厂意大利风味的甜品工厂 测试类模式扩展 说明 记录下学习设计模式-抽象工厂模式的写…

SSMP整合案例(2) Spring Boot整合Lombok简化实体类开发

好啊 接着我们上文SSMP整合案例(1) 构建 Spring Boot Vue MySql项目环境 我们继续 接下来 我们要在java项目中 建立出数据库表对应的实体类 我们还是先看看自己上文中 创建的这个 book表 其中四个字段 主键id 数字枚举类型的type 字符串类型name 字符串类型 description 我们…

【设计模式与范式:总结型】74 | 总结回顾23种经典设计模式的原理、背后的思想、应用场景等

到今天为止,23 种经典的设计模式已经全部讲完了。咱们整个专栏也完成了 3/4,马上就要进入实战环节了。在进入新模块的学习之前,我照例带你做一下总结回顾。23 种经典设计模式共分为 3 种类型,分别是创建型、结构型和行为型。今天&…

Floyd 判圈算法(Floyd Cycle Detection Algorithm)

Floyd 判圈算法(Floyd Cycle Detection Algorithm) 前言 Floyd判圈算法属于对指针操作的算法,它一般需要且仅需要两个指针,通过设定不同的指针移动速度,来判定链表或有限状态机中是否存在环。人为规定移动较快的指针称为快速指针(fast poin…

Java官方笔记9Lambda表达式

Lambda Expression 有了Lambda Expression,就不用再写anonymous classes。 写Lambda,首先要找到它的类型。 There is a restriction on the type of a lambda expression: it has to be a functional interface. 函数接口,只有1个抽象方法的接…

Vue中v-text、v-html、v-on的基本语法(二)

文章目录 前言一、vue中data属性定义对象、数组相关数据二、v-text、v-html指令使用三、v-on基本指令使用(一)四、v-on指令基本使用(二)之在函数中获取vue实例本身this五、v-on指令基本使用(二)之在函数中传递参数六、v-on指令基本使用(二)之简化写法绑定函数和事件定义的两种写…

从零搭建一台基于ROS的自动驾驶车-----2.运动控制

系列文章目录 北科天绘 16线3维激光雷达开发教程 基于Rplidar二维雷达使用Hector_SLAM算法在ROS中建图 Nvidia Jetson Nano学习笔记–串口通信 Nvidia Jetson Nano学习笔记–使用C语言实现GPIO 输入输出 Autolabor ROS机器人教程 从零搭建一台基于ROS的自动驾驶车-----1.整体介…

Unreal 5 实现丧尸伤害和死亡

这一篇主要是实现玩家攻击丧尸可以造成伤害和自身血量为零时,丧尸可以死亡。丧尸也可以对玩家造成伤害,有攻击范围的判定。 这一篇的功能实现有四个功能: 丧尸被攻击掉血丧尸死亡处理玩家被攻击掉血玩家死亡处理 丧尸被攻击掉血 子弹的修改…

C语言内存操作函数,memcpy的使用和模拟实现,memmove的使用和模拟实现,memcmp的使用,memset的使用。

1.memcpy 函数原型: void *memcpy( void *dest, const void *src, size_t count );void *dest 目标数据首元素地址const void *src 源数据(需要拷贝过去的数据)size_t count 需要拷贝数据的字节大小void *memcpy 拷贝结束后,返回目标数据的起始地址 函…

【简单的图像信息展示应用程序】PYQt5

写在前面的话 这段代码的作用是创建一个简单的图像信息展示应用程序,用户可以点击按钮查看特定文件夹中图像的文件名、大小,并通过查看按钮查看图像。请注意,文件夹路径需要根据实际情况进行修改。 代码讲解 这段代码是使用PyQt5库创建一个…

特征选择:过滤法,嵌入法,包装法

特征选择时首先要去除冗余特征。 它是由其他其他的特征中推演出来的。比如,一个球的体积,那么半径这个特征就是冗余的,因为我们可以由球的体积推算半径。冗余特征在很多时候都是不起作用的 过滤法 过滤方法通常用作预处理步骤,特…

c++11 标准模板(STL)(std::basic_ios)(三)

定义于头文件 <ios> template< class CharT, class Traits std::char_traits<CharT> > class basic_ios : public std::ios_base 类 std::basic_ios 提供设施&#xff0c;以对拥有 std::basic_streambuf 接口的对象赋予接口。数个 std::basic_ios…

2013年全国硕士研究生入学统一考试管理类专业学位联考英语(二)试题

2013考研英语&#xff08;二&#xff09;真题 Section I Use of English Directions: Read the following text. Choose the best word(s) for each numbered blank and mark A, B, C or D on ANSWER SHEET 1. (10 points) Given the advantages of electronic money, you mi…

某农业大学数据结构A-第2周作业

1.两个顺序表集合的差集 【问题描述】两个顺序表集合的差集 【样例输入】 25 33 57 60 48 9 13 0 12 50 23 60 4 34 25 13 0 【样例输出】 33 57 48 9 【注意】0代表输入的结束&#xff1b;可以用C风格实现&#xff0c;也可以用C风格实现&#xff0c;两种风格大家均需掌握 #…

Kafka架构

5.kafka系统的架构 5.1主题topic和分区partition topic Kafka中存储数据的逻辑分类&#xff1b;你可以理解为数据库中“表”的概念&#xff1b; 比如&#xff0c;将app端日志、微信小程序端日志、业务库订单表数据分别放入不同的topic partition分区&#xff08;提升kafka吞…

【Proteus仿真】常用器件名称

前言 我常用的仿真器件加上收集的&#xff0c;基于Proteus8.13版本。以下分为两部分&#xff0c;内容都一样&#xff0c;一部分是纯文字&#xff0c;一部分是文字图片&#xff0c;方便快速获取和定位。等积累了更多的器件后会在更新的。搜索时可以用CtrlF快速查找。 命名的规则…

管理类联考——英语二——技巧篇——写作——B节——议论文——必备替换句型

议论文必备替换句型 (一&#xff09;表示很明显/众所周知的句型 It is obvious thatIt is clear thatIt is apparent thatIt is evident thatlt is self-evident thatIt is manifest thatIt is well-knownIt is known to all thatIt is widely-accepted thatIt is crystal-cl…

三层交换机互联互通配置 华为交换机

#三层交换机互联互通 交换机配置 命令 #进入系统视图 <Huawei>system-view #关闭系统提示信息 [Huawei]undo info-center enable #创建三个Vlan10 [Huawei]vlan 10 [Huawei-vlan10]quit [Huawei]vlan 20 [Huawei-vlan20]quit [Huawei]vlan 30 [Huawei-vlan30]quit #接…