第16章_多版本并发控制

news2024/11/13 21:34:09

第16章_多版本并发控制

1. 什么是MVCC

MVCC(Multiversion Concurrency Control),多版本并发控制。顾名思义,MVCC是通过数据行的多个版本管理来实现数据库的并发控制。这项技术使得在InnoDB的事务隔离级别下执行一致性读操作有了保证。换言之,就是为了查询一些正在被另一个事务更新的行,并且可以看到它们被更新之前的值,这样在做查询的时候就不用等待另一个事务释放锁

MVCC没有正式的标准,在不同的DBMS中 MVCC的实现方式可能是不同的,也不是普遍使用的(大家可以参考相关的DBMS文档)。这里讲解InnoDB 中 MVCC 的实现机制(MySQL其它的存储引擎并不支持它)。

2. 快照读与当前读

MVCC在MySQL InnoDB中的实现主要是为了提高数据库并发性能,用更好的方式去处理读-写冲突,做到即使有读写冲突时,也能做到不加锁非阻塞并发读,而这个读指的就是快照读,而非当前读。当前读实际上是一种加锁的操作,是悲观锁的实现。MVCC本质是采用乐观锁思想的一种方式。

2.1 快照读

快照读又叫一致性读,读取的是快照数据。不加锁的简单的 SELECT 都属于快照读,即不加锁的非阻塞读;比如这样:

SELECT * FROM player WHERE ...

之所以出现快照读的情况,是基于提高并发性能的考虑,快照读的实现是基于MVCC,它在很多情况下,避免了加锁操作,降低了开销。 既然是基于多版本,那么快照读可能读到的并不一定是数据的最新版本,而有可能是之前的历史版本。 快照读的前提是隔离级别不是串行级别,串行级别下的快照读会退化成当前读。

2.2 当前读

当前读读取的是记录的最新版本(最新数据,而不是历史版本的数据),读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。加锁的SELECT,或者对数据进行增删改都会进行当前读。比如:

SELECT * FROM student LOCK IN SHARE MODE # 共享锁
SELECT * FROM student FOR UPDATE # 排他锁
insert into student values ... # 排他锁
DELETE FROM student where ... # 排他锁
UPDATE student SET ... # 排他锁

3. 复习

3.1 再谈隔离级别

我们知道事务有 4 个隔离级别,可能存在三种并发问题:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5XL3Ddp5-1687074818101)(475.png)]

在MySQL中,默认的隔离级别是可重复读,可以解决脏读和不可重复读的问题,如果仅从定义的角度来看,它并不能解决幻读问题。如果我们想要解决幻读问题,就需要采用串行化的方式,也就是将隔离级别提升到最高,但这样一来就会大幅降低数据库的事务并发能力。
​MVCC可以不采用锁机制,而是通过乐观锁的方式来解决不可重复读和幻读问题!它可以在大多数情况下替代行级锁,降低系统的开销。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MuNK0rGW-1687074818102)(476.png)]

3.2 隐藏字段、Undo Log版本链

回顾一下undo日志的版本链,对于使用 InnoDB 存储引擎的表来说,它的聚簇索引记录中都包含两个必要的隐藏列。

  • trx_id :每次一个事务对某条聚簇索引记录进行改动时,都会把该事务的 事务id 赋值给trx_id 隐藏列。

  • roll_pointer(回滚指针) :每次对某条聚簇索引记录进行改动时,都会把旧的版本写入到 undo日志 中,然后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。

举例: student表数据如下

select * from student;
+------+--------+--------+
| id   |  name  |  class |
-------+--------+--------+
| 张三  |  一班  |
+--------+------+--------+
1 row in set (0.07 sec)

假设插入该记录的事务id为8,那么此刻该条记录的示意图如下所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gpDvYFkf-1687074818102)(477.png)]

insert undo只在事务回滚时起作用,当事务提交后,该类型的undo日志就没用了,它占用的Undo LogSegment也会被系统回收(也就是该undo日志占用的Undo页面链表要么被重用,要么被释放)。

假设之后两个事务id分别为 10 、 20 的事务对这条记录进行 UPDATE 操作,操作流程如下:

发生时间顺序事务10事务20
1BEGIN;
2BEGIN;
3UPDATE student SET name=“李四” WHERE id=1;
4UPDATE student SET name=“王五” WHERE id=1;
5COMMIT
6UPDATE student SET name=“钱七” WHERE id=1;
UPDATE student SET name=“宋八” WHERE id=1;
COMMIT;

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zw6bL4Hm-1687074818103)(478.png)]

对该记录每次更新后,都会将旧值放到一条 undo日志 中,就算是该记录的一个旧版本,随着更新次数的增多,所有的版本都会被 roll_pointer 属性连接成一个链表,我们把这个链表称之为 版本链 ,版本链的头节点就是当前记录最新的值。 每个版本中还包含生成该版本时对应的事务id

4. MVCC实现原理之ReadView

MVCC 的实现依赖于:隐藏字段、Undo Log、Read View

4.1 什么是ReadView

本质也是一种数据结构嘛!

在MVCC机制中,多个事务对同一个行记录进行更新会产生多个历史快照,这些历史快照保存在Undo Log里。如果一个事务想要查询这个行记录,需要读取哪个版本的行记录呢?这时就需要用到ReadView了,它帮我们解决了行的可见性问题。

ReadView就是事务在使用MVCC机制进行快照读操作时产生的读视图。当事务启动时,会生成数据库系统当前的一个快照,InnoDB为每个事务构造了一个数组,用来记录并维护系统当前活跃事务的ID("活跃"指的就是,启动了但还没提交)。

4.2 设计思路

使用 READ UNCOMMITTED 隔离级别的事务,由于可以读到未提交事务修改过的记录,所以直接读取记录的最新版本就好了。

使用 SERIALIZABLE 隔离级别的事务,InnoDB规定使用加锁的方式来访问记录。

使用READ CONMITTEDREPEATABLE READ隔离级别的事务,都必须保证读到已经提交了的事务修改过的记录。假如另一个事务已经修改了记录但是尚未提交,是不能直接读取最新版本的记录的,核心问题就是需要判断一下版本链中的哪个版本是当前事务可见的,这是ReadView要解决的主要问题。

这个ReadView中主要包含4个比较重要的内容,分别如下:

  1. creator_trx_id ,创建这个 Read View 的事务 ID。

    说明:只有在对表中的记录做改动时(执行INSERT、DELETE、UPDATE这些语句时)才会为事务分配事务id,否则在一个只读事务中的事务id值都默认为0。

  2. trx_ids ,表示在生成ReadView时**当前系统中活跃的读写事务(未提交的事务)**的 事务id列表

  3. up_limit_id 活跃的事务中最小的事务 ID。

  4. low_limit_id ,表示生成ReadView时系统中应该分配给下一个事务的 id 值。low_limit_id 是系统最大的事务id值,这里要注意是系统中的事务id,需要区别于正在活跃的事务ID。

注意:low_limit_id并不是trx_ids中的最大值,事务id是递增分配的。比如,现在有id为1,2,3这三个事务,之后id为3的事务提交了。那么一个新的读事务在生成ReadView时,trx_ids就包括1和2,up_limit_id的值就是1,low_limit_id的值就是4。

举例:

trx_ids为trx2、trx3、trx5和trx8的集合,系统的low_limit_id为trx8+1(如果之前没有其他的新增事务),活跃的最小事务ID (up_limit_id)为trx2。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gtEn0oXZ-1687074818104)(479.png)]

4.3 ReadView的规则

有了这个ReadView,这样在访问某条记录时,只需要按照下边的步骤判断记录的某个版本是否可见。

  • 如果被访问的数据记录的trx_id属性值与ReadView中的 creator_trx_id 值相同,意味着当前事务在访问它自己修改过的记录,所以该版本可以被当前事务访问。

  • 如果被访问数据记录的trx_id属性值小于ReadView中的 up_limit_id 值,表明生成该版本的事务在当前事务生成ReadView前已经提交,所以该版本可以被当前事务访问。

  • 如果被访问数据记录的trx_id属性值大于或等于ReadView中的 low_limit_id 值,表明生成该版本的事务在当前事务生成ReadView后才开启,所以该版本不可以被当前事务访问。

  • 如果被访问数据记录的的trx_id属性值在ReadView的 up_limit_idlow_limit_id 之间,那就需要判断一下trx_id属性值是不是在 trx_ids 列表中。

    • 如果在,说明创建ReadView时生成该版本的事务还是活跃的,该版本不可以被访问。

    • 如果不在,说明创建ReadView时生成该版本的事务已经被提交,该版本可以被访问。

4.4 MVCC整体操作流程

了解了这些概念之后,我们来看下当查询一条记录的时候,系统如何通过MVCC找到它:

  1. 首先获取事务自己的版本号,也就是事务 ID;

  2. 获取 ReadView;

  3. 查询得到的数据,然后与 ReadView 中的事务版本号进行比较;

  4. 如果不符合 ReadView 规则,就需要从 Undo Log 中获取历史快照;

  5. 最后返回符合规则的数据。

如果某个版本的数据对当前事务不可见的话,那就顺着版本链找到下一个版本的数据,继续按照上边的步骤判断可见性,依此类推,直到版本链中的最后一个版本。如果最后一个版本也不可见的话,那么就意味着该条记录对该事务完全不可见,查询结果就不包含该记录。

InnoDB中,MVCC是通过Undo Log + ReadView进行数据读取,Undo Log保存了历史快照,而Read View规则帮我们判断当前版本的数据是否可见。

在隔离级别为**读已提交(Read Commit)时,一个事务中的每一次SELECT查询都会重新获取一次Read View。**如表所示:

事务说明
begin;
select * from student where id > 2;获取一次Read View
select * from student where id > 2;获取一次Read View
commit;

注意,此时同样的查询语句都会重新获取一次 Read View,这时如果 Read View 不同,就可能产生不可重复读或者幻读的情况。

当隔离级别为可重复读的时候,就避免了不可重复读,这是因为一个事务只在第一次 SELECT 的时候会

获取一次 Read View,而后面所有的 SELECT 都会复用这个 Read View,如下表所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f4zuolQL-1687074818105)(480.png)]

5. 举例说明

假设现在student表中只有一条由事务动为8的事务插入的一条记录:

select * from student;
+------+--------+--------+
| id   |  name  |  class |
-------+--------+--------+
| 张三l |  一班  |
+--------+------+--------+
1 row in set (0.07 sec)

MVCC只能在READCOMMITTED和REPEATABLE READ两个隔离级别下工作。接下来看一下READ COMNITTED和REPEATABLE READ所谓的生成ReadView的时机不同到底不同在哪里。

5.1 READ COMMITTED隔离级别下

READ COMMITTED :每次读取数据前都生成一个ReadView

现在有两个 事务id 分别为 10 、 20 的事务在执行:

# Transaction 10
BEGIN;
UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;


# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...
说明:事务执行过程中,只有在第一次真正修改记录时(比如使用INSERT、DELETE、UPDATE语句),才会被分配一个单独的事务id,这个事务id是递增的。所以我们才在事务2中更新一些别的表的记录,目的是让它分配事务id。

此刻,表student 中 id 为 1 的记录得到的版本链表如下所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1Zkk4VGd-1687074818106)(481.png)]

假设现在有一个使用 READ COMMITTED 隔离级别的事务开始执行:

# 使用READ COMMITTED隔离级别的事务
BEGIN;

# SELECT1:Transaction 10、20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'

这个SELECT1的执行过程如下:

步骤 1∶在执行SELECT语句时会先生成一个ReadView ,ReadView的trx_ids列表的内容就是[10,20],up_limit_id为10,low_limit_id为21, creator_trx_id为0。

步骤 2 : 从版本链中挑选可见的记录,从图中看出,最新版本的列name的内容是’王五’,该版本的trx_id值为10,在trx_ids列表内,所以不符合可见性要求,根据roll_pointer跳到下一个版本。

步骤 3 : 下一个版本的列name的内容是’李四’,该版本的trx_id值也为10,也在trx_ids列表内,所以也不符合要求,继续跳到下一个版本。

步骤 4∶下一个版本的列name的内容是’张三’,该版本的trx_id值为8,小于ReadView中的up_limit_id值10,所以这个版本是符合要求的,最后返回给用户的版本就是这条列name为’张三’的记录。

之后,我们把 事务id 为 10 的事务提交一下:

# Transaction 10
BEGIN;
UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;
COMMIT;

然后再到 事务id 为 20 的事务中更新一下表 student 中 id 为 1 的记录:

# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...
UPDATE student SET name="钱七" WHERE id=1;
UPDATE student SET name="宋八" WHERE id=1;

此刻,表student中 id 为 1 的记录的版本链就长这样:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-phFDSubx-1687074818107)(482.png)]

然后再到刚才使用 READ COMMITTED 隔离级别的事务中继续查找这个 id 为 1 的记录,如下:

# 使用READ COMMITTED隔离级别的事务
BEGIN;
# SELECT1:Transaction 10、20均未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'

# SELECT2:Transaction 10提交,Transaction 20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'王五'

这个SELECT2的执行过程如下:

步骤1:在执行SELECT语句时会又会单独生成一个ReadView,该ReadView的trx_ids列表的内容就是[20],up_limit_id为20,low_limit_id为21, creator_trx_id为0。

步骤2:∶从版本链中挑选可见的记录,从图中看出,最新版本的列name的内容是’宋八’,该版本的trx_id值为20,在trx_ids列表内,所以不符合可见性要求,根据roll_pointer跳到下一个版本。

步骤3:下一个版本的列name的内容是’钱七’,该版本的trx_id值为20,也在trx_ids列表内,所以也不符合要求,继续跳到下一个版本。

步骤4:下一个版本的列name的内容是’王五’,该版本的trx_id值为10,小于ReadView中的up_limit_id值20,所以这个版本是符合要求的,最后返回给用户的版本就是这条列name为’王五’的记录。

以此类推,如果之后事务id为20的记录也提交了,再次在使用READ COMNITTED隔离级别的事务中查询表student中id值为1的记录时,得到的结果就是‘宋八’了,具体流程我们就不分析了。

然后再到刚才使用 READ COMMITTED 隔离级别的事务中继续查找这个 id1 的记录,如下:

# 使用READ COMMITTED隔离级别的事务
BEGIN;

# SELECT1:Transaction 10、20均未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'

# SELECT2:Transaction 10提交,Transaction 20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'王五'

5.2 REPEATABLE READ隔离级别下

使用 REPEATABLE READ 隔离级别的事务来说,只会在第一次执行查询语句时生成一个 ReadView ,之后的查询就不会重复生成了。

比如,系统里有两个 事务id 分别为 10 、 20 的事务在执行:

# Transaction 10
BEGIN;
UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;

# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...

此刻,表student 中 id 为 1 的记录得到的版本链表如下所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vAMTDN5L-1687074818107)(483.png)]

假设现在有一个使用 REPEATABLE READ 隔离级别的事务开始执行:

# 使用REPEATABLE READ隔离级别的事务
BEGIN;

# SELECT1:Transaction 10、20未提交
SELECT * FROM student WHERE id = 1; #得到的列name的值为'张三'

这个SELECT1的执行过程如下:

步骤1∶在执行SELECT语句时会先生成一个ReadView,ReadView的trx_ids列表的内容就是[10,20],up_limit_id为10, low_limit_id为21, creator_trx_id为0。

步骤2∶然后从版本链中挑选可见的记录,从图中看出,最新版本的列name的内容是’王五’,该版本的trx_id值为10,在trx_ids列表内,所以不符合可见性要求,根据roll_pointer跳到下一个版本。

步骤3 : 下一个版本的列 name的内容是’李四’,该版本的trx_id值也为10,也在trx_ids列表内,所以也不符合要求,继续跳到下一个版本。

步骤4∶下一个版本的列name的内容是’张三’,该版本的trx_id值为8,小于ReadView中的up_limit_id值10,所以这个版本是符合要求的,最后返回给用户的版本就是这条列name为’张三’的记录。

之后,我们把事务id为10的事务提交一下,就像这样:

# Transaction 10
BEGIN;

UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;

COMMIT;

然后再到 事务id 为 20 的事务中更新一下表 student 中 id 为 1 的记录:

# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...
UPDATE student SET name="钱七" WHERE id=1;
UPDATE student SET name="宋八" WHERE id=1;

此刻,表student 中 id 为 1 的记录的版本链长这样:

image-20230618154501615

然后再到刚才使用 REPEATABLE READ 隔离级别的事务中继续查找这个 id 为 1 的记录,如下:

# 使用REPEATABLE READ隔离级别的事务
BEGIN;

# SELECT1:Transaction 10、20均未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'

# SELECT2:Transaction 10提交,Transaction 20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值仍为'张三'

步骤1∶因为当前事务的隔离级别为REPEATABLE READ,而之前在执行SELECT1时已经生成过ReadView了,所以直接复用之前的ReadView,之前的ReadView的trx_ids列表的内容就是[10,20],up_limit_id为 10 , low_limit_id为21 , creator_trx_id为0。

步骤2∶然后从版本链中挑选可见的记录,从图中可以看出,最新版本的列name的内容是’宋八’,该版本的trx_id值为20,在trx_ids列表内,所以不符合可见性要求,根据roll_pointer跳到下一个版本。

步骤3:下一个版本的列name的内容是’钱七’,该版本的trx_id值为20,也在trx_ids列表内,所以也不符合要求,继续跳到下一个版本。

步骤4:下一个版本的列name的内容是’王五’,该版本的trx_id值为10,而trx_ids列表中是包含值为10的事务id的,所以该版本也不符合要求,同理下一个列name的内容是‘李四’的版本也不符合要求。继续跳到下—个版本。

步骤5:下一个版本的列name的内容是’张三’,该版本的trx_id值为80,小于ReadView中的up_limit_id值10,所以这个版本是符合要求的,最后返回给用户的版本就是这条列c为’张三’的记录。

5.3 如何解决幻读

接下来说明InnoDB 是如何解决幻读的。

假设现在表 student 中只有一条数据,数据内容中,主键 id=1,隐藏的 trx_id=10,它的 undo log 如下图 所示。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pymMr3Kr-1687074818110)(485.png)]

假设现在有事务 A 和事务 B 并发执行, 事务 A 的事务 id 为 20事务 B 的事务 id 为 30

步骤1:事务 A 开始第一次查询数据,查询的 SQL 语句如下。

select * from student where id >= 1;

在开始查询之前,MySQL 会为事务 A 产生一个 ReadView,此时 ReadView 的内容如下: trx_ids= [20,30] , up_limit_id=20 , low_limit_id=31 , creator_trx_id=20

由于此时表 student 中只有一条数据,且符合 where id>=1 条件,因此会查询出来。然后根据 ReadView机制,发现该行数据的trx_id=10,小于事务 A 的 ReadView 里 up_limit_id,这表示这条数据是事务 A 开启之前,其他事务就已经提交了的数据,因此事务 A 可以读取到。

结论:事务 A 的第一次查询,能读取到一条数据,id=1。

步骤2:接着事务 B(trx_id=30),往表 student 中新插入两条数据,并提交事务。

insert into student(id,name) values(2,'李四');

insert into student(id,name) values(3,'王五');

此时表student 中就有三条数据了,对应的 undo 如下图所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Nvjo0eYt-1687074818110)(486.png)]

步骤3:接着事务 A 开启第二次查询,根据可重复读隔离级别的规则,此时事务 A 并不会再重新生成ReadView。此时表 student 中的 3 条数据都满足 where id>=1 的条件,因此会先查出来。然后根据 ReadView 机制,判断每条数据是不是都可以被事务 A 看到。

1)首先 id=1 的这条数据,前面已经说过了,可以被事务 A 看到。

2)然后是 id=2 的数据,它的 trx_id=30,此时事务 A 发现,这个值处于 up_limit_id 和 low_limit_id 之 间,因此还需要再判断 30 是否处于 trx_ids 数组内。由于事务 A 的 trx_ids=[20,30],因此在数组内,这表示 id=2 的这条数据是与事务 A 在同一时刻启动的其他事务提交的,所以这条数据不能让事务 A 看到。

3)同理,id=3 的这条数据,trx_id 也为 30,因此也不能被事务 A 看见。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tye0oihg-1687074818111)(487.png)]

结论:最终事务 A 的第二次查询,只能查询出 id=1 的这条数据。这和事务 A 的第一次查询的结果是一样的,因此没有出现幻读现象,所以说在 MySQL 的可重复读隔离级别下,不存在幻读问题。

6.总结

这里介绍了 MVCC 在 READ COMMITTD 、 REPEATABLE READ 这两种隔离级别的事务在执行快照读操作时访问记录的版本链的过程。这样使不同事务的 读-写 、 写-读 操作并发执行,从而提升系统性能。

核心点在于 ReadView 的原理, READ COMMITTD 、 REPEATABLE READ 这两个隔离级别的一个很大不同就是生成ReadView的时机不同:

  • READ COMMITTD 在每一次进行普通SELECT操作前都会生成一个ReadView

  • REPEATABLE READ 只在第一次进行普通SELECT操作前生成一个ReadView,之后的查询操作都重复使用这个ReadView就好了。

说明:我们之前说执行DELETE语句或者更新主键的UPDATE语句并不会立即把对应的记录完全从页面中删除,而是执行一个所谓的delete mark操作,相当于只是对记录打上了一个删除标志位,这主要就是为MVCC服务的。

通过MVCC 我们可以解决:

  1. 读写之间阻塞的问题。通过MCC 可以让读写互相不阻塞,即读不阻塞写,写不阻塞读,这样就可以提升事务并发处理能力。
  2. 降低了死锁的概率。这是因为MVCC 采用了乐观锁的方式,读取数据时并不需要加锁,对于写操作,也只锁定必要的行。
  3. 解决快照读的问题。当我们查询数据库在某个时间点的快照时,只能看到这个时间点之前事务提交更新的结果,而不能看到这个时间点之后事务提交的更新结果。(读已提交的隔离级别)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/659378.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

chapter9: SpringBoot自定义Starter

尚硅谷SpringBoot顶尖教程 1. 自定义starter介绍 自定义starter从下面两个方面着手: 这个自定义starter的场景需要用到哪些依赖?如何编写自定义starter的自动配置? 查看springboot提供的已有starter组件的自动配置类,基本使用…

NFC Forum Type2 Tag

RC522作为一款NFC读写芯片,性价比还是很高的,因为在项目里需要采用NFC OOB配对,所以需要读取配对方模拟的NFC卡片信息 读取对象采用NRF52832,使用其NFC功能模拟type2 tag,但是读取方式和M1卡不一样,踩了不…

软件测试员不要过于迷信技术,忽视软技能

精于技术对于测试员,乃至技术员本身没毛病,甚至应大加赞赏,在组织中更应像国宝熊猫一样照顾好。然而我们发现,一些精于技术的测试员混的并不好。“纯正”的技术人员就该吃亏?问题到底出现在哪里? 根据我对…

南大通用GBase 8c 多模多态分布式数据库系列二之安装与卸载

目录 一.前言 二. 学习目标 三. 安装流程 四. 配置要求 1. 硬件配置要求 2. 软件配置要求 3. 软件依赖配置 五. 集群规划 1. 物理规划 2. 演示环境配置 六. 安装前环境检查 1. 关闭防火墙 2. 关闭SELINUX 3. 主机名检查、依赖检查 4. Gbase用户配置sudo 七. 配…

科研闭环指南|关于 Review Rebuttal 的二三事

两个月前投稿的论文审稿(Review)意见快下来了,期间我也是作为审稿人(Reviewer)完成了4篇工作的审稿工作。回想自己从入学以来也算是审过 10 篇左右的稿子了,也参与过 Review 之后的 Rebuttal 环节。下面我就…

思维决定发展,软件测试人也不例外

最近特别懒,不想码字,原本写作就很差,更是退化严重。社招和校招面试过很多人,从十年前自己还很弱的时候学着面试,到数百次面试积累之后,面对候选人的时候,我的内心依然有些许紧张,非…

《Reinforcement Learning: An Introduction》第5章笔记

Chapter 5 Monte Carlo Methods Monte Carlo 方法不假设拥有完备的环境知识,它仅仅需要经验–从与环境的实际或模拟交互中得到的一系列的状态、动作、和奖励的样本序列。 Monte Carlo方法是基于平均采样回报的来解决强化学习问题的方法。 5.1 Monte Carlo Predic…

NFS服务器

文章目录 NFS服务器NFS的由来与功能什么是NFS(Network File System)什么是RPC(Remote Procedure Call)NFS启动的RPC daemons NFS Server 端的配置所需要的软件NFS的软件结构/etc/exports配置文件的语法与参数 启动NFSRPC服务的注册状况怎么查看(rpcinfo) NFS的连接查看showmoun…

认识服务器

1、查看操作系统的信息 CentOS 输入:cat /etc/os-release 字段含义解释NAME操作系统名称CentOS LinuxVERSION操作系统版本7 (Core)ID操作系统标识centosID_LIKE相关操作系统标识rhel fedoraVERSION_ID操作系统版本号7PRETTY_NAME可读性较好的操作系统名称CentOS L…

产品如何有效把控产品上线质量

很多人乍看这个标题,可能有些惊讶。产品上线质量不是由测试来主要负责的么,怎么产品也需要来把控这个事情? 诚然,从具体分工而言,产品的线上质量主要由测试来负责,产品按时按量完成由项目项目经理把控。但…

详谈数据中心网络中的四种虚拟化技术:VXLAN、NVGRE、STT和SPBM

概要 在现代的数据中心网络中,虚拟化技术被广泛应用以提供更高的可扩展性、灵活性和效率。数据中心网络虚拟化允许多个虚拟网络在共享的物理基础设施上运行,使得网络资源的管理更为简单和高效。本文将详细介绍数据中心网络中的四种不同类型的虚拟化技术&…

全网超全,接口测试用例设计——常见问题和风险,测试不背锅...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 接口测试用例设计…

【开源工具】使用Whisper提取视频、语音的字幕

这里写目录标题 一、语音转字幕操作步骤1、下载安装包Assets\WhisperDesktop.zip[^2]2、加载模型2.1 下载模型2.1.1 进入Hugging Face[^3]的仓库2.1.2 选择需要下载的模型2.1.3 配置模型路径 3、语音转字幕4、实时语言转录功能 二、相关简介[^1]特点开发人员指南构建说明其他注…

【MySql】表的内连接和外连接

文章目录 内连接外连接左外连接右外连接 OJ题目 本篇博客主要介绍的内容是表的连接,在MySql中表的连接分为内连接和外连接,下面,我们直接进入主题把 内连接 内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我们前…

Ubuntu Win10 github.com访问很慢的解决办法

win10 请看这里: 解决国内 github.com 打不开的最最最准确方法_github打不开_杨大脸I的博客-CSDN博客 Ubuntu 请看这里: 看了上面的就应该知道, 需要两步骤:1、修改host文件;2、刷新DNS 1、修改host文件 Ubuntu修改hosts文件_ub…

PySpark集群环境安装(HA-Standalone模式)

PySpark是Python中的一个库, 由Spark官方提供. 专供用户使用Python语言操作Spark 1. 首先安装python环境 基于anaconda的虚拟环境方案,来安装python。因为anaconda可以虚拟出多个Python环境, 且各个环境相对独立,能够解决python版本的兼容性问题 1.1 …

Rust的特征对象

文章目录 Rust的特征对象前言在屏幕上绘制各种UI组件 Rust的特征对象 前言 特征对象不像泛型和impl trait这种零成本抽象,特征对象是在runtime时确定具体类型,有一定的性能开销。当我们需要函数参数是一类实现了特定trait的类型时,这时候就…

4个Camtasia2023隐藏新功能,99%的人都不知道!

在今年5月,全能录屏软件 Camtasia 迎来了2023新版,带来非常多新功能,让制作录屏视频的效果再上一层楼!所有购买过旧版 Camtasia 的老用户,都可以享受优惠升级。 Camtaisa 获取: http://souurl.cn/YWkrO7 更…

【Java高级语法】(六)内部类Inner Class:这可能是史上最全的关于内部类的学习资料~

Java高级语法详解之包装类 :one: 概念:two: 优缺点:three: 使用2.1 成员内部类2.2 局部内部类2.3 匿名内部类2.4 静态内部类2.5 小结:外部类访问四种内部类的特点2.6 小结:其他类访问四种内部类的特点 :four: 内部类与外部类的关系:five: 应用场景:six: …

云贝餐饮连锁独立版 v2.6.1+公众号+小程序端+抖音端端+全插件免授权版安装配置教程

云贝餐饮系统应该持续做好多年了,以前的版本都需要授权一直没使用,优选源码网整体测试下感觉从体验上还有逻辑设计上都非常不错,首页、会员中心支持DIY装修,配送支持多种平台对接,基本上餐饮行业需要的功能都能满足了。…