数学建模常用模型(一):灰色预测法

news2025/1/11 4:14:28

数学建模常用模型(一):灰色预测法

灰色预测法是一种用于处理少量数据、数据质量较差或者缺乏历史数据的预测方法。它适用于一些非线性、非平稳的系统,尤其在短期预测和趋势分析方面有着广泛的应用。灰色预测法作为一种强大的数学建模工具,通过利用有限的信息,能够在不完备的条件下进行准确的预测。它在许多领域都得到广泛应用,并且随着灰色系统理论的发展,它的应用前景将更加广阔。
在这里插入图片描述

1. 灰色系统理论简介

灰色预测法(Gray Forecasting Method)是一种基于少量、不完全信息的数学建模方法,用于预测未来的发展趋势。通过科学的方法分析事物的过去和现在,揭示出其中的发展规律,从而进行准确的预测。

2. 灰色系统的特点

灰色系统理论运用灰色数学处理不确定性量化问题,并充分利用已知信息,寻求系统运动规律。其独特之处在于适用于处理信息匮乏的系统。

3. 灰色生成

灰色生成是通过对原始数据进行特定要求的处理,揭示出数据背后的内在规律。常用的生成方法包括累加生成、累减均值生成和级比生成。

4. 累加生成简介

累加生成是一种关键方法,通过对原始数据列进行逐项累加,将灰色过程由灰色转变为白色,突显数据的积分特性和规律。
在这里插入图片描述

5. GM(1,1)模型

GM(1,1)模型是灰色预测法中常用的模型之一。它通过对原始数据进行累加生成,建立灰色微分方程,并通过求解方程来得到准确的预测值。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6. 预测值的求解

在这里插入图片描述

7. GM(1,1)模型精度检验

在选择模型后,对其进行精度检验以验证其合理性是必要的。常用的灰色模型精度检验方法包括相对误差大小检验法、关联度检验法和后验差检验法。下面主要介绍后验差检验法:
在这里插入图片描述
计算残差得:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

8. 灰度通用代码

function []=huidu()
% 本程序主要用来计算根据灰色理论建立的模型的预测值。
% 应用的数学模型是 GM(1,1)。
% 原始数据的处理方法是一次累加法
y=input("请输入数据);
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
	yy(i)=yy(i-1)+y(i);
end
for i=1:(n-1)
	B(i,1)=-(yy(i)+yy(i+1))/2;B(i,2)=1;
	B=ones(n-1,2);
end
BT=B';
for j=1:n-1
	YN(j)=y(j+1);
end
YN=YN';
A=inv(BT*B)*BT*YN;
a=A(1);
U=A(2);
t=u/a;
i=l:n+2;
yys(i+1)=(y(1)-t).*exp(-a.*i)+t;yys(1)=y(1);
for j=n+2:-1:2
	ys(j)=yys(j)-yys(j-1);
end
X=1:n;
xs=2:n+2;yn=ys(2:n+2);plot(x,y,'^r',xs,yn,'*-b');det=0;
sum1=0;
sumpe=0;
for i=l:n
	sumpe=sumpe+y(i);
end
pe=sumpe/n;
for i=1:n
	sum1=sum1+(y(i)-pe).^2;
end
s1=sqrt(sum1/n);
sumce=0;
for i=2:n
	sumce=sumce+(y(i)-yn(i));
end
	ce=sumce/(n-1);sum2=0;
for i=2:n
	sum2=sum2+(y(i)-yn(i)-ce).^2;
end
s2=sqrt(sum2/(n-1));
c=(s2)/(s1);
disp(['后验差比值为:,num2str(c)]);
if c<8.35
	disp(系统预测精度好 )
else if c<0.5
		disp("系统预测精度合格 )
	else if c<0.65
			disp("系统预测精度勉强')
		else
			disp("系统预测精度不合格 )
		end
	end
end
disp(['下个拟合值为,num2str(ys(n+1))]);
disp([再下个拟合值为',num2str(ys(n+2))]);

9.运行结果

在这里插入图片描述

10.更多资料(代码,电子版资料,入门资料)

欢迎关注咨询,后续继续更新…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/657262.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于STM32+OneNet设计的物联网智慧路灯

一、前言 近年来,构筑智慧城市、推动城镇发展被国家列入重要工作范畴。发布的《超级智慧城市报告》显示,全球已启动或在建的智慧城市有1000多个,中国在建500个,远超排名第二的欧洲(90个)。从在建智慧城市的分布来看,我国已初步形成环渤海、长三角、珠三角、中西部四大智…

FreeRTOS 任务优先级 【杂记】

FreeRTOS任务优先级 FreeRTOS任务优先级&#xff1a;任务优先级数值越小&#xff0c;任务优先级越低。 1、 FreeRTOS 中任务的最高优先级是通过 FreeRTOSConfig.h 文件中的configMAX_PRIORITIES 进行配置的&#xff0c;用户实际可以使用的优先级范围是 0 到 configMAX_PRIORIT…

python 第七章 字典dict {}

系列文章目录 第一章 初识python 第二章 变量 第三章 基础语句 第四章 字符串str 第五章 列表list [] 第六章 元组tuple ( ) 文章目录 字典的应用场景创建字典的语法字典常见操作增改删查 字典的循环遍历遍历字典的key遍历字典的value遍历字典的元素遍历字典的键值对&#xff0…

【新款DVR、NVR、直播、录播机单芯片解决方案】

新款DVR、NVR、直播、录播机单芯片解决方案 一、 22AP80或SS522V100是入门级DVR解决方案&#xff0c;能做到4路1080p30fps编码 2路 1080p30fps解码 多路图像分析方法智能算法&#xff1b;可以平替Hi3520DV510 二、 22AP10或SS524V100&#xff0c;这是一款中端的DVR芯片&#…

java语言中方法的多态

文章目录 前言一、多态是什么&#xff1f;二、使用步骤 1.实操展示2.注意事项总结 前言 自然界中&#xff0c;生物是多种形态的&#xff0c;繁殖这一行为也是多样的&#xff0c;细菌是裂殖&#xff0c;禽类是卵生&#xff0c;哺乳动物是胎生......java语言中的一个创建的方法&a…

Nike登录的acw_sc__v2参数逆向详细思路分析(非常简单,建议入手)含AST解混淆代码

分析目录 前言一、分析三、总结四、番外1.AST解混淆 前言 最近周末闲着无事&#xff0c;看了一下Nike的登录&#xff0c;发现连环境都不用补acw_sc__v2这个参数&#xff0c;分享出来给大家趣味性娱乐一下 一、分析 打开F12抓包看看登录 老样子复制curl给抓到Postman里面去…

Qt多线程编程之线程池

QThreadPool与QRunnable 线程的创建及销毁需要与系统交互&#xff0c;会产生很大的开销。若需要频繁的创建线程建议使用线程池&#xff0c;有线程池维护一定数量的线程&#xff0c;当需要进行多线程运算时将运算函数传递给线程池即可。线程池会根据可用线程进行任务安排。 QT…

Android studio自动登录和记住密码的实现

Android studio自动登录和记住密码的实现 文章目录 Android studio自动登录和记住密码的实现前言一、效果二、设计思路三、知识点介绍1. SharedPreferenced2. checkButton就不介绍了 四、自动登录及记住密码实现总结与补充 前言 大家好&#xff0c;我是oy&#xff0c;今天介绍…

浅层神经网络

目录 1、神经网络表示 2、计算神经网络的输出 3、多个样本的向量化 4、激活函数 5、激活函数的导数 6、神经网络的梯度下降法 1、神经网络表示 输入层&#xff1a;有输入特征&#x1d465;1、&#x1d465;2、&#x1d465;3隐藏层&#xff1a;四个结点&#xff0c;表示你…

验证性实验 - 逻辑回归

练习2&#xff1a;逻辑回归 介绍 在本练习中&#xff0c;您将实现逻辑回归并将其应用于两个不同的数据集。还将通过将正则化加入训练算法&#xff0c;来提高算法的鲁棒性&#xff0c;并用更复杂的情形来测试模型算法。 在开始练习前&#xff0c;需要下载如下的文件进行数据上…

前端Vue非常简单实用商品分类展示组件 侧边商品分类组件

前端vue非常简单实用商品分类展示组件 侧边商品分类组件 &#xff0c; 下载完整代码请访问uni-app插件市场址:https://ext.dcloud.net.cn/plugin?id13084 效果图如下&#xff1a; #### 使用方法 使用方法 <!-- flist:第一级数组 slist&#xff1a;第二级数组 tlist&…

JS 介绍 Babel 的使用及 presets plugins 的概念

一、Babel 是什么 Bebal 可以帮助我们将新 JS 语法编译为可执行且兼容旧浏览器版本的一款编译工具。 举个例子&#xff0c;ES6&#xff08;编译前&#xff09;&#xff1a; const fn () > {};ES5&#xff08;编译后&#xff09;&#xff1a; var fn function() {}二、B…

NLP实战:使用Word2vec实现文本分类

目录 一、数据预处理 1、加载数据 2. 构建词典 3.生成数据批次和迭代器 二、模型构建 1.搭建模型 2.初始化模型 3.定义训练与评估函数 三、训练模型 1. 拆分数据集并运行模型 2. 测试指定数据 &#x1f368; 本文为[&#x1f517;365天深度学习训练营]内部限免文章&…

设计模式篇---单例模式

文章目录 概念结构与实现优缺点 概念 单例模式是结构最简单的设计模式&#xff0c;通过单例模式可以保证在整个系统中的一个类只有一个实例&#xff0c;从而节约系统资源。举个例子&#xff0c;比如windows电脑下的任务管理器只能打开一个&#xff0c;这个就是单例模式&#x…

【C语言进阶】程序员必备技能之文件操作

目录 &#x1f945;什么是文件&#xff1a; &#x1f3d1;程序文件&#xff1a;&#x1f3d1;数据文件&#xff1a; &#x1f3d1;文件名&#xff1a; &#x1f945;文件的打开和关闭&#xff1a;&#x1f3d1;文件指针&#xff1a; &#x1f3d1;fopen和fclose&#xff1a; &a…

genlogic GLG -CE 4.3 For Java/C#/C++ Crack

GLG CE工具包是一个极其灵活和强大的图形框架&#xff0c;用于构建显示实时数据的可视化界面&#xff0c;例如过程控制和监控的操作员显示、SCADA / HMI模拟和图表、 交通、遥测和网络监控显示&#xff0c;以及其他任务关键应用程序。 航电仪表板演示 该工具包包括 用于创建动…

面向对象三大特征

面向对象三大特征 众所周知&#xff0c;面向对象有三大特征 封装继承多态 封装继承多态&#xff0c;就好像武侠小说里的“金、木、水、火、土”一样&#xff0c;相生相克 封装 封装就像是武侠里的金钟罩铁布衫&#xff0c;把对象的数据和方法封装起来&#xff0c;对外只暴露…

C语言strstr函数的使用和模拟实现

strstr 函数原型&#xff1a; char *strstr( const char *string, const char *strCharSet );const char *string 要搜索的字符串const char *strCharSet 子串char *strstr 返回第一个出现字串的起始地址&#xff0c;方便函数链式访问 函数作用&#xff1a; 在 string 字符串…

逻辑越权之验证码|token|接口(36)

token是类似于会话一串数字代表数据包的唯一性&#xff0c;数据包的编号&#xff0c;防止一些csrf&#xff0c;或者一些存放数据包的攻击&#xff1b;一般数据包里面有token&#xff0c;就会检验数据包的唯一性&#xff0c;就会造成提交数据包&#xff0c;被token拦截掉。 验证…

第八章 图像压缩

文章目录 第八章 图像压缩8.1基础知识8.1.1 编码冗余8.1.4图像信息的度量8.1.5保真准则8.1.6图像压缩模型8.17图像格式、容器和压缩标准 8.2一些基本的压缩方法8.2.1霍夫曼编码8.2.2Golomb编码8.2.3算术编码8.2.4LZW编码8.2.5行程编码8.2.6基于符号的编码8.2.7比特平面编码8.2.…