简要介绍 | 强化学习:从原理到应用

news2024/11/16 11:35:55

注1:本文系“简要介绍”系列之一,仅从概念上对强化学习进行非常简要的介绍,不适合用于深入和详细的了解。
注2:"简要介绍"系列的所有创作均使用了AIGC工具辅助

强化学习:从原理到应用

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Jiw8xCQk-1686996791635)(https://miro.medium.com/max/1200/1*1Gh9Sx6kQJ9LapYQapuPjg.png)]

1. 背景介绍

强化学习 (Reinforcement Learning, RL) 是一种通过与环境交互来学习决策策略的机器学习方法。它的核心思想是让智能体 (Agent) 在执行动作 (Action)、观察环境 (Environment) 反馈的状态 (State) 和奖励 (Reward) 的过程中,学习到一个最优策略 (Optimal Policy),从而实现长期累积奖励最大化。

2. 原理介绍与推导

2.1 强化学习框架

强化学习框架

强化学习的核心框架包括以下几个部分:

  • 智能体 (Agent):在环境中执行动作,学习最优策略的实体;
  • 环境 (Environment):提供状态信息和奖励反馈,受到智能体动作影响的外部系统;
  • 状态 (State):描述环境当前状况的信息;
  • 动作 (Action):智能体可以在环境中执行的操作;
  • 奖励 (Reward):环境对智能体执行动作的评价,是一个标量值。

2.2 马尔可夫决策过程 (Markov Decision Process, MDP)

强化学习问题通常可以建模为一个马尔可夫决策过程,包括以下几个要素:

  • 状态集合 (State Set) S S S
  • 动作集合 (Action Set) A A A
  • 状态转移函数 (State Transition Function) P ( s ′ ∣ s , a ) P(s'|s, a) P(ss,a),描述在状态 s s s下执行动作 a a a后转移到状态 s ′ s' s的概率;
  • 奖励函数 (Reward Function) R ( s , a , s ′ ) R(s, a, s') R(s,a,s),描述在状态 s s s下执行动作 a a a并转移到状态 s ′ s' s后获得的奖励。

策略 (Policy)**: π ( a ∣ s ) \pi(a|s) π(as),描述智能体在状态 s s s下选择动作 a a a的概率。

目标是找到一个最优策略 π ∗ \pi^* π,使得长期累积奖励最大化。

2.3 价值函数 (Value Function) 与 Q 函数 (Q-function)

价值函数 (Value Function) V π ( s ) V^\pi(s) Vπ(s),描述在状态 s s s下,依据策略 π \pi π执行动作后能获得的未来累积奖励的期望。

Q 函数 (Q-function) Q π ( s , a ) Q^\pi(s, a) Qπ(s,a),描述在状态 s s s下执行动作 a a a并依据策略 π \pi π执行后续动作能获得的未来累积奖励的期望。

价值函数和 Q 函数满足以下递推关系(贝尔曼方程 (Bellman Equation)):

V π ( s ) = ∑ a π ( a ∣ s ) ∑ s ′ P ( s ′ ∣ s , a ) [ R ( s , a , s ′ ) + γ V π ( s ′ ) ] V^\pi(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^\pi(s')] Vπ(s)=aπ(as)sP(ss,a)[R(s,a,s)+γVπ(s)]

Q π ( s , a ) = ∑ s ′ P ( s ′ ∣ s , a ) [ R ( s , a , s ′ ) + γ ∑ a ′ π ( a ′ ∣ s ′ ) Q π ( s ′ , a ′ ) ] Q^\pi(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^\pi(s', a')] Qπ(s,a)=sP(ss,a)[R(s,a,s)+γaπ(as)Qπ(s,a)]

其中 γ \gamma γ折扣因子 (Discount Factor),取值范围为 [0, 1],表示未来奖励的折扣程度。

3. 研究现状

3.1 值迭代 (Value Iteration) 与策略迭代 (Policy Iteration)

值迭代和策略迭代是基于动态规划 (Dynamic Programming) 求解马尔可夫决策过程的传统方法。值迭代通过迭代更新价值函数 V ( s ) V(s) V(s),直到收敛;策略迭代则交替进行策略评估 (Policy Evaluation) 和策略改进 (Policy Improvement)。

3.2 Q 学习 (Q-Learning) 与 SARSA

Q 学习和 SARSA 是基于时间差分学习 (Temporal Difference Learning) 的方法。它们通过迭代更新 Q 函数,最终收敛到最优 Q 函数 Q ∗ ( s , a ) Q^*(s, a) Q(s,a),从而获得最优策略。

Q 学习和 SARSA 的主要区别在于更新 Q 函数时的目标值。Q 学习使用最大化后续状态的 Q 值作为目标值,而 SARSA 使用实际执行动作的后续状态的 Q 值作为目标值。

3.3 深度强化学习 (Deep Reinforcement Learning)

深度强化学习通过结合深度学习 (Deep Learning) 和强化学习,利用神经网络 (Neural Network) 作为函数逼近器 (Function Approximator),可以处理具有复杂状态空间的问题。

典型的深度强化学习算法包括:

  • DQN (Deep Q-Network):将 Q 函数用深度神经网络表示,利用经验回放 (ExperienceReplay) 和固定目标网络 (Fixed Target Network) 技术进行稳定训练;
  • DDPG (Deep Deterministic Policy Gradient):将策略和 Q 函数用深度神经网络表示,适用于连续动作空间的问题;
  • PPO (Proximal Policy Optimization):通过限制策略更新幅度,提高了数据利用率和训练稳定性;
  • A3C (Asynchronous Advantage Actor-Critic):利用异步并行训练多个智能体,加速训练过程,并提高了收敛性能。

4. 应用领域

强化学习已经在许多领域取得了显著的成果,包括但不限于:

  • 游戏:AlphaGo、AlphaGo Zero 和 AlphaZero 通过强化学习击败了人类顶级棋手,展示了强化学习在围棋、象棋等游戏上的强大潜力;
  • 机器人:强化学习被用于机器人控制,如教会机器人行走、抓取物体等;
  • 自动驾驶:强化学习可以用于优化自动驾驶汽车的控制策略,提高道路安全和驾驶体验;
  • 推荐系统:强化学习可以用于优化推荐策略,提高用户满意度和长期收益;
  • 资源管理:强化学习可以用于优化资源分配问题,如数据中心能耗管理、通信网络流量控制等。

5. 总结

强化学习是一种通过与环境交互学习决策策略的机器学习方法。通过求解马尔可夫决策过程,强化学习旨在找到最优策略,使得长期累积奖励最大化。深度强化学习将深度学习和强化学习相结合,使得强化学习可以处理具有复杂状态空间的问题。强化学习在游戏、机器人、自动驾驶等领域取得了显著的成果。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DjA6eA7O-1686996802674)(https://miro.medium.com/max/1200/1*oMSg2_mKguAGKy1C64UFlw.png)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/656944.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手撕学生管理系统超详解——【c++】

题目要求:设计一个学生成绩管理程序,实现按班级完成对学生成绩信息的录入和修改,并用文件保存。 实现按班级输出学生的成绩单;实现按学号和姓名进行查询,按平均成绩进行排序功能。 问题描述 该程序的目标是提供一个简单且易于使用…

scratch lenet(2): C语言实现图像直方图的计算

scratch lenet(2): C语言实现图像直方图的计算 1. 目的 用 C 语言实现 uint8 类型图像(单通道)的直方图计算。不涉及直方图均衡化。 2. 什么是图像直方图 2.1 统计得到图像直方图 通常是对于单通道的灰度图而言的。像素范围是 [0, 255], 统计每个像…

提高错误日志处理效率!使用Python和钉钉机器人实现自动告警聚合

1、背景 日志是非常重要的信息资源。它们记录了应用程序的运行状态、错误和异常情况,帮助我们了解系统的健康状况以及发现潜在的问题。为了高效地管理和分析日志数据,许多组织采用了Elasticsearch、Logstash和Kibana(ELK)堆栈作为…

Eclipse Krazo(Jakarta MVC)的使用

文章目录 背景Jakarta MVC规范Eclipse Krazo使用前的思考全局配置Controller示例返回View的三种写法View中用到的Model如何设值?View中如何获取Model中的值? 参数校验防止CSRFKrazo是如何实现的呢?如何生成csrf的token?如何校验cs…

开源赋能,决胜未来 — 参加原子全球开源峰会有感

目录 文章目录 目录前言开源决胜未来:闭源摧毁 UNIX,开源成就 Linux开源创新:软硬件协同,共建开源生态 前言 开源原子基金会作为国内首家开源基金会组织,由其主办的首届 “开放原子全球开源峰会” 也是第一次被冠以 “…

干货文:Mac 中 .bash_profile 和 .zshrc 的区别

如果你想在 Mac OS 中配置 MySQL 的环境变量,在 .zshrc 文件中添加如下内容: # 设置 mysql 的路径 export MYSQL_HOME/usr/local/mysql/bin# 将 MYSQL_HOME 添加到 PATH 中 export PATH$HOME/bin:/usr/local/bin:$MYSQL_HOME:$PATH# 解决需要 source 才…

硬件【9】详解二极管钳位电路

文章目录 1 概述1.1 正向钳位电路1.2 偏置正向钳位电路 1 概述 在之前的 二极管限幅电路 一文中,我们学习了二极管限幅电路,该电路可以削掉一部分信号,但不会影响剩余信号。今天,我们将学习另一种基于二极管的电路,该…

搭建环境【2】windows主机和ubuntu互传文件的4种方法

我的ubuntu系统是安装在 VMware 虚拟机中的,两者之间经常要互传文件,下面介绍4种常用的互传文件方法。 1. 共享文件夹方式互传 在虚拟机中需要开启共享文件夹的功能。首先虚拟机中的ubuntu要求是已经开机了的状态,然后进行设置:…

Vue2封装一个全局通知组件并发布到NPM

✍🏼作者:周棋洛,计算机学生 ♉星座:金牛座 🏠主页:点击查看更多 🌐关键:vue2 组件封装 npm发包 文章目录 1. 前言 🍃2. 我为什么要封装通知插件 ❓3. 初始化vue空项目 &…

B047-cms02-高级查询 删除 添加 修改

目录 高级查询页面准备下拉框显示文章类型ArticleController用jstl和el表达式取值展示 高级查询参数ArticleQuery 高级查询页面发送请求导入jquery.jdirk.js在jquery下引用绑定按钮发送请求高级查询sql 绑定删除事件绑定事件拿到标签id值准备模态框来自xmind弹出删除模态框绑定…

matlab不显示子图刻度并调整子图间距

matlab中在使用subplot函数画图时,尤其是做emd分解查看IMF时, 正常画图的代码及结果如下: figure for i 1:size(imf_norm,1)subplot(7,1,i)plot(imf_norm(i,:))ylabel(IMFstring(i)) end其中imf_norm为分解得到的imfs 效果图: …

python里apply用法_Python apply函数的用法

Python编程语言Python 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够把用其他语言制作的…

HDL抽象等级 仿真模型 网表 delay speicfy与sdf

1.HDL 硬件描述语言 抽象分级 HDL这里主要说verilog 在描述硬件电路时分为三个抽象级别 行为级模型:主要用于test bench,着重系统行为和算法,不在于电路实现,不可综合(常用描述有initial,fork/join&#…

【MYSQL】MYSQL应用环境,系统特征,储存引擎,应用框架和索引功能的详细讲解

作者简介: 辭七七,目前大一,正在学习C/C,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖&#x1f…

DINO-DETR匈牙利匹配与加噪过程学习记录

今天再来回顾一下DINO中匈牙利匹配与损失函数部分,该部分大致与DETR相似,却又略有不同。 为了查看数据方便,博主将num_query改为20,max_select值也为20。 匈牙利匹配过程 首先是数据送入匈牙利匹配中进行标签匹配过程了。 获取…

qt.qpa.plugin: Could not load the Qt platform plugin “xcb“ in

兄弟们看看是不是这个错: QObject::moveToThread: Current thread (0xe5205f0) is not the objects thread (0xa14d0f0). Cannot move to target thread (0xe5205f0)qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "/xxx/python3.…

Esp32+Blynk实现云端控制LED开灭

目录 环境配置依赖库安装blynk 基础设置 GPIO 点灯实验 环境配置 依赖库安装 参考 blynk 官方快速上手文档 如果要使用 blynk 提供的环境,我们就必须安装对应的库 选择基于 blynk 且适用于 ESP32 的库并安装到 arduino 上: blynk 基础设置 进入官网并且…

Question1:harbor登录成功,推送镜像失败

denied: requested access to the resource is denied 解决方案 查看用户的权限 Harbor 用户角色权限速查 系统级角色: Harbor 系统管理员:“Harbor 系统管理员”拥有最多的权限。除了上述权限外,“Harbor 系统管理员”还可以列出所有项目、…

一种令人拍案叫绝的 ChatGPT 攻击手段!

公众号关注 “GitHubDaily” 设为 “星标”,每天带你逛 GitHub! 最近看到一个非常巧妙的 ChatGPT 攻击手段,跟大家分享一下,也算是做个提醒。 不论你是否懂技术,我都建议你了解一下这种攻击手段,有备无患。…

Golang的trace性能分析

文章目录 一、trace概述二、trace的使用方式代码中trace采集通过pprof采集 三、trace分析细节trace的web界面trace中需要关注的关注GC的频率关注goroutine调度情况关注goroutine的数量理想情况 四、GC分析当前服务GC情况设置GOGC设置GOMEMLIMITGC阈值的讨论GC的特点 五、gorout…