Opencv-C++笔记 (10) : opencv-图像像素计算

news2025/1/19 22:15:54

文章目录

  • 一、概率
  • 寻找图像像素的最大值和最小值
  • 计算图像的均值和标准方差

一、概率

我们可以将数字图像理解成一定尺寸的矩阵,矩阵中每个元素的大小表示了图像中每个像素的亮暗程度,因此统计矩阵中的最大值,就是寻找图像中灰度值最大的像素,计算平均值就是计算图像像素平均灰度,可以用来表示图像整体的亮暗程度。因此针对矩阵数据的统计工作在图像像素中同样具有一定的意义和作用。在OpenCV 4中集成了求取图像像素最大值、最小值、平均值、均方差等众多统计量的函数,接下来将详细介绍这些功能的相关函数。

寻找图像像素的最大值和最小值

void cv::minMaxLoc(InputArray src,
                   double * minVal,
                   double * maxVal = 0,
                   Point * minLoc = 0,
                   Point * maxLoc = 0,
                   InputArray mask = noArray())

src:需要寻找最大值和最小值的图像或者矩阵,要求必须是单通道矩阵
minVal:图像或者矩阵中的最小值。
maxVal:图像或者矩阵中的最大值。
minLoc:图像或者矩阵中的最小值在矩阵中的坐标。
maxLoc:图像或者矩阵中的最大值在矩阵中的坐标。
mask:掩模,用于设置在图像或矩阵中的指定区域寻找最值。

这里我们见到了一个新的数据类型Point,该数据类型是用于表示图像的像素坐标,由于图像的像素坐标轴以左上角为坐标原点,水平方向为x轴,垂直方向为y轴,因此Point(x,y)对应于图像的行和列表示为Point(列数,行数)。在OpenCV中对于2D坐标和3D坐标都设置了多种数据类型,针对2D坐标数据类型定义了整型坐标cv::Point2i(或者cv::Point)、double型坐标cv::Point2d、浮点型坐标cv::Point2f,对于3D坐标同样定义了上述的坐标数据类型,只需要将其中的数字“2”变成“3”即可。对于坐标中x、y、z轴的具体数据,可以通过变量的x、y、z属性进行访问,例如Point.x可以读取坐标的x轴数据。

该函数实现的功能是寻找图像中特定区域内的最值,函数第一个参数是输入单通道矩阵,需要注意的是,该变量必须是一个单通道的矩阵数据,如果是多通道的矩阵数据,需要用cv::Mat::reshape()将多通道变成单通道,或者分别寻找每个通道的最值,然后再进行比较寻找到全局最值。对于cv::Mat::reshape()的用法,在代码清单3-8中给出。第二到第五个参数分别是指向最小值、最大值、最小值位置和最大值位置的指针,如果不需要寻找某一个参数,可以将该参数设置为NULL,函数最后一个参数是寻找最值得掩码矩阵,用于标记寻找上述四个值的范围,参数默认值为noArray(),表示寻找范围是矩阵中所有数据。

Mat cv::Mat::reshape(int  cn,int  rows = 0)

cn:转换后矩阵的通道数。
rows:转换后矩阵的行数,如果参数为零,则转换后行数与转换前相同。

注意
如果矩阵中存在多个最大值或者最小值时,minMaxLoc()函数输出最值的位置为按行扫描从左向右第一次检测到最值的位置,同时输入参数时一定要注意添加取地址符。
为了让读者更加了解minMaxLoc()函数的原理和使用方法,在代码清单3-9中给出寻找矩阵最值的示例程序,在图3-6中给出了程序运行的最终结果,在图3-7给出了创建的两个矩阵和通道变换后的矩阵在Image
Watch中查看的内容。

#include<iostream>
#include<vector>
#include<string>
#include <opencv2/opencv.hpp>
#include "opencv/highgui.h"

using namespace std;
using namespace cv;

int main(int argc,char** argv) {
    cout<<"OpenCv Version: "<<CV_VERSION<<endl;
    float a[12]={1,2,3,4,5,10,6,7,8,9,10,0};
    Mat img=Mat(3,4,CV_32FC1,a);//单通道矩阵
    Mat imgs=Mat(2,3,CV_32FC2,a);//多通道矩阵
    double minVal,maxVal;//用于存放矩阵中的最大值和最小值
    Point minIdx,maxIdx;//用于存放矩阵中的最大值和最小值的位置

    /*寻找单通道矩阵中的最值*/
    minMaxLoc(img,&maxVal,&minVal,&minIdx,&maxIdx);
    cout << "img中最大值是:" << maxVal << " " << "在矩阵中的位置:" << maxIdx << endl;
    cout << "img中最小值是:" << minVal << " " << "在矩阵中的位置:" << minIdx << endl;

    /*寻找多通道矩阵中的最值*/
    Mat imgs_re=imgs.reshape(1,4);//将多通道矩阵变成单通道矩阵
    minMaxLoc(imgs_re,&minVal,&maxVal,&minIdx,&maxIdx);
    cout << "img中最大值是:" << maxVal << " " << "在矩阵中的位置:" << maxIdx << endl;
    cout << "img中最小值是:" << minVal << " " << "在矩阵中的位置:" << minIdx << endl;
    return 0;
}

在这里插入图片描述
在这里插入图片描述

计算图像的均值和标准方差

图像的均值表示图像整体的亮暗程度,图像的均值越大图像整体越亮。标准方差表示图像中明暗变化的对比程度,标准差越大表示图像中明暗变化越明显。OpenCV
4提供了mean()函数用于计算图像的平均值,提供了meanStdDev()函数用于同时计算图像的均值和标准方差。接下来将详细的介绍这两个函数的使用方法。

cv::Scalar cv::mean(InputArray src,InputArray mask = noArray())

src:待求平均值的图像矩阵。
mask:掩模,用于标记求取哪些区域的平均值。

该函数用来求取图像矩阵的每个通道的平均值,函数的第一个参数用来输入待求平均值的图像矩阵,其通道数目可以在1到4之间。需要注意的是,该函数的返回值是一个cv::Scalar类型的变量,函数的返回值有4位,分别表示输入图像4个通道的平均值,如果输入图像只有1个通道,那么返回值的后三位都为0,例如输入该函数一个单通道平均值为1的图像,输出的结果为[1,0,0,0],可以通过cv::Scalar[n]查看第n个通道的平均值。该函数的第二个参数用于控制图像求取均值的范围,在第一个参数中去除第二个参数中像素值为0的像素,计算的原理如式(3.5)所示,当不输入第二个参数时,表示求取第一个参数全部像素的平均值。
在这里插入图片描述
其中表示第c个通道的平均值,表示第c个通道像素的灰度值。
meanStdDev()函数可以同时求取图像每个通道的平均值和标准方差,其函数原型在代码清单3-11中给出。

void cv::meanStdDev(InputArray src,OutputArray mean,OutputArray stddev,InputArray mask = noArray())
src:待求平均值的图像矩阵。
mean:图像每个通道的平均值,参数为Mat类型变量。
stddev:图像每个通道的标准方差,参数为Mat类型变量。
mask:掩模,用于标记求取哪些区域的平均值和标准方差。

该函数的第一个参数与前面mean()函数第一个参数相同,都可以是1-4通道的图像,不同之处在于该函数没有返回值,图像的均值和标准方差输出在函数的第二个和第三个参数中,区别于mean()函数,用于存放平均值和标准方差的是Mat类型变量,变量中的数据个数与第一个参数通道数相同,如果输入图像只有一个通道,该函数求取的平均值和标准方差变量中只有一个数据。该函数计算原理如式(3.6)所示。

在这里插入图片描述

#include<iostream>
#include<vector>
#include<string>
#include <opencv2/opencv.hpp>
#include "opencv/highgui.h"

using namespace std;
using namespace cv;

int main(int argc,char** argv) {
    cout<<"OpenCv Version: "<<CV_VERSION<<endl;
    float a[12]={1,2,3,4,5,10,6,7,8,9,10,0};
    Mat img=Mat(3,4,CV_32FC1,a);//单通道矩阵
    Mat imgs=Mat(2,3,CV_32FC2,a);//多通道矩阵

    cout << "/* 用meanStdDev同时求取图像的均值和标准方差 */" << endl;
    Scalar myMean;
    myMean=mean(imgs);
    cout<<"imgs均值 = "<<myMean<<endl;
    cout<<"imgs第一个通道的均值 = "<<myMean[0]<<" "
        <<"imgs第二个通道的均值 = "<<myMean[1]<<endl;

    cout << "/* 用meanStdDev同时求取图像的均值和标准方差 */" << endl;
    Mat myMeanMat,myStddevMat;

    meanStdDev(img,myMeanMat,myStddevMat);
    cout << "img均值=" << myMeanMat << " " << endl;
    cout << "img标准方差=" << myStddevMat << endl << endl;
    meanStdDev(imgs,myMeanMat,myStddevMat);
    cout << "img均值=" << myMeanMat << " " << endl;
    cout << "img标准方差=" << myStddevMat << endl << endl;
    return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/653612.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人机交互学习-7 可视化设计

可视化设计 窗口与菜单窗口窗口Window窗口界面类型 菜单注意事项 对话框模态对话框非模态对话框属性对话框功能对话框进度对话框公告对话框错误对话框消除错误信息 警告对话框确认对话框消除确认对话框 管理对话框内容标签对话框扩展对话框级联对话框 对话框设计原则 控件工具栏…

内部类~~

1&#xff1a;一个类中再定义一个类 2&#xff1a;内部类的使用场景&#xff0c;作用 当一个事物的内部&#xff0c;还有一个部分需要一个完整的结构进行描述&#xff0c;而这个内部的完整结构又只为外部事物提供服务&#xff0c;那么整个内部的完整结构可以选择使用内部类来设…

“大龄”码农的“中年危机”:35岁之后,IT计算机的出路在哪?

前言 对于一个工作不下于4年的人来说&#xff0c;我觉得我有一定的思考沉淀来回答这个问题。 说说我的一些经历吧。 普通一本毕业&#xff0c;专业是自动化&#xff0c;大学由于挂科太多没拿到学位证到上海找实习&#xff0c;一开始做的是开发&#xff0c;从16年到19年都是做…

警惕冒充“数字人民币”诈骗案!

现在大家越来越习惯使用电子支付的方式&#xff0c;数字支付方式的需求也在不断增长。然而一些犯罪嫌疑人却看到了可乘之机&#xff0c;近日&#xff0c;山东菏泽曹县警方破获了一起利用数字人民币&#xff0c;实施诈骗的案件&#xff0c;受骗群众高达上万人。 家住山东菏泽曹…

基于浏览器渲染的组件测试

目录 为什么需要自动化测试 测试的类型 组件测试的方式 白盒测试 黑盒测试 灰盒测试 推荐的方案 Playwright 组件测试案例 Playwright 简介 playwright 架构图 BrowserContext 组件测试原理 组件引入 模型封装 组件渲染测试 组件 Props 测试 组件 Events 测试…

运维数字化转型:用数字化思维重塑运维体系(文末送书五本)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

基于Java学生请假系统设计实现(源码+lw+部署文档+讲解等)

博主介绍&#xff1a; ✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战 ✌ &#x1f345; 文末获取源码联系 &#x1f345; &#x1f447;&#x1f3fb; 精…

FDTD 时域有限差分数值模拟方法与应用,COMSOL 多场耦合仿真技术与应用

专题一&#xff1a;COMSOL多物理场耦合 &#xff08;一&#xff09;案列应用实操教学&#xff1a; 案例一 光子晶体能带分析、能谱计算、光纤模态计算、微腔腔膜求解 案例二 类比凝聚态领域魔角石墨烯的moir 光子晶体建模以及物理分析 案例三 传播表面等离激元和表面等离…

Cat.4网络DTU,稳定快速的数据传输神器

好兄弟们&#xff01;你们有没有遇到过&#xff0c;半夜在家睡得正香&#xff0c;突然领导一个电话干过来告诉你设备数据传输中断了&#xff0c;让你赶紧看看怎么回事的情况。简直让人崩溃&#xff01; 在现代工业和物联网应用中&#xff0c;数据传输的稳定性和速度对于设备的运…

Python-Inspect.exe-uiautomation-基本操作-获取微信群成员信息

文章目录 1.Inspect.exe2.uiautomation使用2.1.简介和安装2.2.获取微信群成员昵称2.3.常用控件类型2.4.比较通用的属性2.4.窗口常见操作2.5.常见鼠标和键盘操作3.总结1.Inspect.exe 检查 (Inspect.exe) 是一种基于 Windows 的工具,可以选择任何 UI 元素并查看其辅助功能数据。…

ASEMI代理光宝光耦LTV-5314资料,LTV-5314规格书

编辑-Z 在电子设备的设计和制造过程中&#xff0c;光耦合器是一种至关重要的组件。它们在电路中起到隔离作用&#xff0c;防止电流反向流动&#xff0c;从而保护设备免受损坏。其中&#xff0c;光耦LTV-5314是一种广受欢迎的光耦合器&#xff0c;以其卓越的性能和可靠的稳定性…

MaxCompute-批量导出项目空间的建表语句(DDL)

MaxCompute-批量导出项目空间的建表语句&#xff08;DDL&#xff09; 项目背景 最近需要做项目空间的数据备份&#xff0c;包括表结构&#xff08;建表语句&#xff09;&#xff0c;以便在系统出现问题时&#xff0c;或者数据丢失时进行恢复。 所遇问题 前面我介绍过MaxCom…

【算法】原地哈希与快速幂

文章目录 一、原地哈希二、快速幂2.1 指数无负数2.2 指数有负数 一、原地哈希 直接看例题&#xff1a;题目链接 题目描述&#xff1a; 给你一个未排序的整数数组 nums &#xff0c;请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间…

【机器学习】十大算法之一 “SVM”

作者主页&#xff1a;爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?typeblog个…

python获取某乎热搜数据并保存成Excel

python获取知乎热搜数据 一、获取目标、准备工作二、开始编码三、总结 一、获取目标、准备工作 1、获取目标&#xff1a; 本次获取教程目标&#xff1a;某乎热搜 2、准备工作 环境python3.xrequestspandas requests跟pandas为本次教程所需的库&#xff0c;requests用于模拟h…

迟来的函数传参补充——传引用【引用调用】【c++】

文章目录 1、传引用1.1、特点1.2、使用1.2.1、一般引用1.2.2、常量引用 1.3、案例1.3.1、常见变量引用做函数参数1.3.2、结构体引用做函数参数 1、传引用 函数传参&#xff0c;几乎一直在用简单的值传递&#xff0c;或者传指针&#xff0c;前者生成一个源结构的副本&#xff0…

知识点滴 - 食物的寒热之分

昨晚多吃了写菠萝蜜&#xff0c;结果第二天就流鼻血了。以前吃晒干的龙眼&#xff0c;也流过鼻血。看来某些水果一次性吃太多&#xff0c;会有问题。 那就来研究研究水果的属性&#xff0c;识别哪些水果吃多了上火&#xff0c;哪些说过吃多了受寒。 中医认为&#xff0c;所有的…

sharding5.0.0分表分库

sharding官网参考 https://shardingsphere.apache.org/document/current/cn/overview/ https://shardingsphere.apache.org/document/legacy/4.x/document/cn/features/sharding/use-norms/pagination/ https://shardingsphere.apache.org/document/legacy/4.x/document/cn/d…

Hector SLAM Scan Matching 理解

Hector SLAM 参考https://www.cnblogs.com/cyberniklee/p/8484104.html 搞清楚几个点有助于对scan matching的理解 占用栅格地图中每个地图点包括点坐标、占用值最大为1&#xff0c;表示该栅格被占用的概率、以及占用值对坐标的梯度&#xff0c;由于地图点是离散的&#xff…

HashMap底层实现

首先来看一下put方法的源码&#xff0c;在HashMap中最重要的就是put方法的执行逻辑以及一些控制参数的意义比较重要。 【put方法】 问题1&#xff1a;如何计算数组位置&#xff1f; 答案&#xff1a; 1、首先在插入<K &#xff0c;V> 时&#xff0c;会先将其包装成一…