I.MX6ULL_Linux_驱动篇(38) 中断驱动

news2024/11/23 22:39:37

不管是裸机实验还是 Linux 下的驱动实验,中断都是频繁使用的功能,在裸机中使用中断我们需要做一大堆的工作,比如配置寄存器,使能 IRQ 等等。 Linux 内核提供了完善的中断框架,我们只需要申请中断,然后注册中断处理函数即可,使用非常方便,不需要一系列复杂的寄存器配置。本章我们就来学习一下如何在 Linux 下使用中断。

Linux 中断 API 函数

每个中断都有一个中断号,通过中断号即可区分不同的中断,有的资料也把中断号叫做中断线。在 Linux 内核中使用一个 int 变量表示中断号。

先来回顾一下裸机实验里面中断的处理方法:
①、使能中断,初始化相应的寄存器。
②、注册中断服务函数,也就是向 irqTable 数组的指定标号处写入中断服务函数
②、中断发生以后进入 IRQ 中断服务函数,在 IRQ 中断服务函数在数组 irqTable 里面查找具体的中断处理函数,找到以后执行相应的中断处理函数。

在 Linux 内核中也提供了大量的中断相关的 API 函数,我们来看一下这些跟中断有关的API 函数:

request_irq 函数

 在 Linux 内核中要想使用某个中断是需要申请的, request_irq 函数用于申请中断, request_irq函数可能会导致睡眠,因此不能在中断上下文或者其他禁止睡眠的代码段中使用 request_irq 函数。 request_irq 函数会激活(使能)中断,所以不需要我们手动去使能中断, request_irq 函数原型如下:

int request_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char *name,void *dev)

函数参数和返回值含义如下:

irq:要申请中断的中断号。

handler:中断处理函数,当中断发生以后就会执行此中断处理函数。

flags:中断标志,可以在文件 include/linux/interrupt.h 里面查看所有的中断标志

这里我们介绍几个常用的中断标志,如下表所示:

标志描述
IRQF_SHARED多个设备共享一个中断线,共享的所有中断都必须指定此标志。如果使用共享中断的话, request_irq 函数的 dev 参数就是唯一区分他们的标志。
IRQF_ONESHOT单次中断,中断执行一次就结束。
IRQF_TRIGGER_NONE无触发。
IRQF_TRIGGER_RISING上升沿触发。
IRQF_TRIGGER_FALLING下降沿触发。
IRQF_TRIGGER_HIGH高电平触发。
IRQF_TRIGGER_LOW低电平触发。
比如 I.MX6U-ALPHA 开发板上的 KEY0 使用 GPIO1_IO18,按下 KEY0 以后为低电平,因此可以设置为下降沿触发,也就是将 flags 设置为 IRQF_TRIGGER_FALLING。表中的这些标志可以通过“|”来实现多种组合。
name:中断名字,设置以后可以在/proc/interrupts 文件中看到对应的中断名字。
dev: 如果将 flags 设置为 IRQF_SHARED 的话, dev 用来区分不同的中断,一般情况下将dev 设置为设备结构体, dev 会传递给中断处理函数 irq_handler_t 的第二个参数。
返回值: 0 中断申请成功,其他负值 中断申请失败,如果返回-EBUSY 的话表示中断已经被申请了。

free_irq 函数

使用中断的时候需要通过 request_irq 函数申请,使用完成以后就要通过 free_irq 函数释放掉相应的中断。如果中断不是共享的,那么 free_irq 会删除中断处理函数并且禁止中断。 free_irq
函数原型如下所示:
 

void free_irq(unsigned int irq,void *dev)

函数参数和返回值含义如下:
irq: 要释放的中断。
dev:如果中断设置为共享(IRQF_SHARED)的话,此参数用来区分具体的中断。共享中断只有在释放最后中断处理函数的时候才会被禁止掉。
返回值:无。

中断处理函数

使用 request_irq 函数申请中断的时候需要设置中断处理函数,中断处理函数格式如下所示:

irqreturn_t (*irq_handler_t) (int, void *)

第一个参数是要中断处理函数要相应的中断号。第二个参数是一个指向 void 的指针,也就是个通用指针,需要与 request_irq 函数的 dev 参数保持一致。用于区分共享中断的不同设备,
dev 也可以指向设备数据结构。中断处理函数的返回值为 irqreturn_t 类型, irqreturn_t 类型定义如下所示:

enum irqreturn {
    IRQ_NONE = (0 << 0),
    IRQ_HANDLED = (1 << 0),
    IRQ_WAKE_THREAD = (1 << 1),
};

typedef enum irqreturn irqreturn_t;

可以看出 irqreturn_t 是个枚举类型,一共有三种返回值。一般中断服务函数返回值使用如下形式:

return IRQ_RETVAL(IRQ_HANDLED)

中断使能与禁止函数

常用的中断使用和禁止函数如下所示:

void enable_irq(unsigned int irq)
void disable_irq(unsigned int irq)

enable_irq 和 disable_irq 用于使能和禁止指定的中断, irq 就是要禁止的中断号。 disable_irq函数要等到当前正在执行的中断处理函数执行完才返回,因此使用者需要保证不会产生新的中
断,并且确保所有已经开始执行的中断处理程序已经全部退出。在这种情况下,可以使用另外一个中断禁止函数:

void disable_irq_nosync(unsigned int irq)

disable_irq_nosync 函数调用以后立即返回,不会等待当前中断处理程序执行完毕。上面三个函数都是使能或者禁止某一个中断,有时候我们需要关闭当前处理器的整个中断系统,也就
是在学习 STM32 的时候常说的关闭全局中断,这个时候可以使用如下两个函数:

local_irq_enable()
local_irq_disable()

local_irq_enable 用于使能当前处理器中断系统, local_irq_disable 用于禁止当前处理器中断系统。假如 A 任务调用 local_irq_disable 关闭全局中断 10S,当关闭了 2S 的时候 B 任务开始运行, B 任务也调用 local_irq_disable 关闭全局中断 3S, 3 秒以后 B 任务调用 local_irq_enable 函数将全局中断打开了。此时才过去 2+3=5 秒的时间,然后全局中断就被打开了,此时 A 任务要关闭 10S 全局中断的愿望就破灭了,然后 A 任务就“生气了”,结果很严重,可能系统都要被A 任务整崩溃。为了解决这个问题, B 任务不能直接简单粗暴的通过 local_irq_enable 函数来打开全局中断,而是将中断状态恢复到以前的状态,要考虑到别的任务的感受,此时就要用到下面两个函数:

local_irq_save(flags)
local_irq_restore(flags)

这两个函数是一对, local_irq_save 函数用于禁止中断,并且将中断状态保存在 flags 中。local_irq_restore 用于恢复中断,将中断到 flags 状态。

上半部与下半部

在有些资料中也将上半部和下半部称为顶半部和底半部,都是一个意思。我们在使用request_irq 申请中断的时候注册的中断服务函数属于中断处理的上半部,只要中断触发,那么中断处理函数就会执行。我们都知道中断处理函数一定要快点执行完毕,越短越好,但是现实往往是残酷的,有些中断处理过程就是比较费时间,我们必须要对其进行处理,缩小中断处理函数的执行时间。比如电容触摸屏通过中断通知 SOC 有触摸事件发生, SOC 响应中断,然后通过 IIC 接口读取触摸坐标值并将其上报给系统。但是我们都知道 IIC 的速度最高也只有400Kbit/S,所以在中断中通过 IIC 读取数据就会浪费时间。我们可以将通过 IIC 读取触摸数据的操作暂后执行,中断处理函数仅仅响应中断,然后清除中断标志位即可。这个时候中断处理过程就分为了两部分:

上半部:上半部就是中断处理函数,那些处理过程比较快,不会占用很长时间的处理就可以放在上半部完成。
下半部:如果中断处理过程比较耗时,那么就将这些比较耗时的代码提出来,交给下半部去执行,这样中断处理函数就会快进快出。
因此, Linux 内核将中断分为上半部和下半部的主要目的就是实现中断处理函数的快进快出,那些对时间敏感、执行速度快的操作可以放到中断处理函数中,也就是上半部。剩下的所
有工作都可以放到下半部去执行,比如在上半部将数据拷贝到内存中,关于数据的具体处理就可以放到下半部去执行。至于哪些代码属于上半部,哪些代码属于下半部并没有明确的规定,
一切根据实际使用情况去判断,这个就很考验驱动编写人员的功底了。这里有一些可以借鉴的参考点:
①、如果要处理的内容不希望被其他中断打断,那么可以放到上半部。
②、如果要处理的任务对时间敏感,可以放到上半部。

③、如果要处理的任务与硬件有关,可以放到上半部

④、除了上述三点以外的其他任务,优先考虑放到下半部。 上半部处理很简单,直接编写中断处理函数就行了,关键是下半部该怎么做呢? Linux 内 核提供了多种下半部机制,接下来我们来学习一下这些下半部机制。

软中断

一开始 Linux 内核提供了“bottom half”机制来实现下半部,简称“BH”。后面引入了软中断和 tasklet 来替代“BH”机制,完全可以使用软中断和 tasklet 来替代 BH,从 2.5 版本的 Linux内核开始 BH 已经被抛弃了。 Linux 内核使用结构体 softirq_action 表示软中断, softirq_action结构体定义在文件 include/linux/interrupt.h 中,内容如下:

433 struct softirq_action
434 {
435     void (*action)(struct softirq_action *);
436 };

在 kernel/softirq.c 文件中一共定义了 10 个软中断,如下所示:

static struct softirq_action softirq_vec[NR_SOFTIRQS];

NR_SOFTIRQS 是枚举类型,定义在文件 include/linux/interrupt.h 中,定义如下:

enum
{
    HI_SOFTIRQ=0, /* 高优先级软中断 */
    TIMER_SOFTIRQ, /* 定时器软中断 */
    NET_TX_SOFTIRQ, /* 网络数据发送软中断 */
    NET_RX_SOFTIRQ, /* 网络数据接收软中断 */
    BLOCK_SOFTIRQ,
    BLOCK_IOPOLL_SOFTIRQ,
    TASKLET_SOFTIRQ, /* tasklet 软中断 */
    SCHED_SOFTIRQ, /* 调度软中断 */
    HRTIMER_SOFTIRQ, /* 高精度定时器软中断 */
    RCU_SOFTIRQ, /* RCU 软中断 */
    NR_SOFTIRQS
};

可以看出,一共有 10 个软中断,因此 NR_SOFTIRQS 为 10,因此数组 softirq_vec 有 10 个元素。 softirq_action 结构体中的 action 成员变量就是软中断的服务函数,数组 softirq_vec 是个全局数组,因此所有的 CPU(对于 SMP 系统而言)都可以访问到,每个 CPU 都有自己的触发和控制机制,并且只执行自己所触发的软中断。但是各个 CPU 所执行的软中断服务函数确是相同的,都是数组 softirq_vec 中定义的 action 函数。要使用软中断,必须先使用 open_softirq 函数注册对应的软中断处理函数, open_softirq 函数原型如下:

void open_softirq(int nr, void (*action)(struct softirq_action *))

函数参数和返回值含义如下:
nr:要开启的软中断,在NR_SOFTIRQS类型中选一个
action:软中断对应的处理函数。
返回值: 没有返回值。

注册好软中断以后需要通过 raise_softirq 函数触发, raise_softirq 函数原型如下:

void raise_softirq(unsigned int nr)

函数参数和返回值含义如下:
nr:要触发的软中断,在NR_SOFTIRQS类型中选一个
返回值: 没有返回值。


软中断必须在编译的时候静态注册! Linux 内核使用 softirq_init 函数初始化软中断,softirq_init 函数定义在 kernel/softirq.c 文件里面,函数内容如下:

634 void __init softirq_init(void)
635 {
636     int cpu;
637
638     for_each_possible_cpu(cpu) {
639         per_cpu(tasklet_vec, cpu).tail =
640         &per_cpu(tasklet_vec, cpu).head;
641         per_cpu(tasklet_hi_vec, cpu).tail =
642         &per_cpu(tasklet_hi_vec, cpu).head;
643     }
644
645     open_softirq(TASKLET_SOFTIRQ, tasklet_action);
646     open_softirq(HI_SOFTIRQ, tasklet_hi_action);
647 }

从上述代码可以看出, softirq_init 函数默认会打开 TASKLET_SOFTIRQ 和HI_SOFTIRQ。

tasklet

tasklet 是利用软中断来实现的另外一种下半部机制,在软中断和 tasklet 之间,建议大家使用 tasklet。 Linux 内核使用 tasklet_struct 结构体来表示 tasklet:

484 struct tasklet_struct
485 {
486     struct tasklet_struct *next; /* 下一个 tasklet */
487     unsigned long state; /* tasklet 状态 */
488     atomic_t count; /* 计数器,记录对 tasklet 的引用数 */
489     void (*func)(unsigned long); /* tasklet 执行的函数 */
490     unsigned long data; /* 函数 func 的参数 */
491 };

第 489 行的 func 函数就是 tasklet 要执行的处理函数,用户定义函数内容,相当于中断处理函数。如果要使用 tasklet,必须先定义一个 tasklet,然后使用 tasklet_init 函数初始化 tasklet,
tasklet_init 函数原型如下:

void tasklet_init(struct tasklet_struct *t,void (*func)(unsigned long),unsigned long data);

函数参数和返回值含义如下:
t:要初始化的 tasklet
func: tasklet 的处理函数。
data: 要传递给 func 函数的参数
返回值: 没有返回值。


也 可 以 使 用 宏 DECLARE_TASKLET 来 一 次 性 完 成 tasklet 的 定 义 和 初 始 化 ,DECLARE_TASKLET 定义在 include/linux/interrupt.h 文件中,定义如下:

DECLARE_TASKLET(name, func, data)

其中 name 为要定义的 tasklet 名字,这个名字就是一个 tasklet_struct 类型的变量, func就是 tasklet 的处理函数, data 是传递给 func 函数的参数。
在上半部,也就是中断处理函数中调用 tasklet_schedule 函数就能使 tasklet 在合适的时间运行, tasklet_schedule 函数原型如下:

void tasklet_schedule(struct tasklet_struct *t)

函数参数和返回值含义如下:
t:要调度的 tasklet,也就是 DECLARE_TASKLET 宏里面的 name。
返回值: 没有返回值。
关于 tasklet 的参考使用示例如下所示:

/* 定义 taselet */
struct tasklet_struct testtasklet;

/* tasklet 处理函数 */
void testtasklet_func(unsigned long data)
{
    /* tasklet 具体处理内容 */
}

/* 中断处理函数 */
irqreturn_t test_handler(int irq, void *dev_id)
{
    ......
    /* 调度 tasklet */
    tasklet_schedule(&testtasklet);
    ......
}

/* 驱动入口函数 */
static int __init xxxx_init(void)
{
    ......
    /* 初始化 tasklet */
    tasklet_init(&testtasklet, testtasklet_func, data);
    /* 注册中断处理函数 */
    request_irq(xxx_irq, test_handler, 0, "xxx", &xxx_dev);
    ......
}

工作队列

工作队列是另外一种下半部执行方式,工作队列在进程上下文执行,工作队列将要推后的工作交给一个内核线程去执行,因为工作队列工作在进程上下文,因此工作队列允许睡眠或重新调度。因此如果你要推后的工作可以睡眠那么就可以选择工作队列,否则的话就只能选择软中断或 tasklet。Linux 内核使用 work_struct 结构体表示一个工作,内容如下(省略掉条件编译):

struct work_struct {
    atomic_long_t data;
    struct list_head entry;
    work_func_t func; /* 工作队列处理函数 */
};

这些工作组织成工作队列,工作队列使用 workqueue_struct 结构体表示,内容如下(省略掉条件编译):

struct workqueue_struct {
    struct list_head pwqs;
    struct list_head list;
    struct mutex mutex;
    int work_color;
    int flush_color;
    atomic_t nr_pwqs_to_flush;
    struct wq_flusher *first_flusher;
    struct list_head flusher_queue;
    struct list_head flusher_overflow;
    struct list_head maydays;
    struct worker *rescuer;
    int nr_drainers;
    int saved_max_active;
    struct workqueue_attrs *unbound_attrs;
    struct pool_workqueue *dfl_pwq;
    char name[WQ_NAME_LEN];
    struct rcu_head rcu;
    unsigned int flags ____cacheline_aligned;
    struct pool_workqueue __percpu *cpu_pwqs;
    struct pool_workqueue __rcu *numa_pwq_tbl[];
};

Linux 内核使用工作者线程(worker thread)来处理工作队列中的各个工作, Linux 内核使用worker 结构体表示工作者线程, worker 结构体内容如下:

struct worker {
    union {
        struct list_head entry;
        struct hlist_node hentry;
    };
    struct work_struct *current_work;
    work_func_t current_func;
    struct pool_workqueue *current_pwq;
    bool desc_valid;
    struct list_head scheduled;
    struct task_struct *task;
    struct worker_pool *pool;
    struct list_head node;
    unsigned long last_active;
    unsigned int flags;
    int id;
    char desc[WORKER_DESC_LEN];
    struct workqueue_struct *rescue_wq;
};

从上述代码可以看出,每个 worker 都有一个工作队列,工作者线程处理自己工作队列中的所有工作。在实际的驱动开发中,我们只需要定义工作(work_struct)即可,关于工作队列和工作者线程我们基本不用去管。简单创建工作很简单,直接定义一个 work_struct 结构体变量即可,然后使用 INIT_WORK 宏来初始化工作, INIT_WORK 宏定义如下:

#define INIT_WORK(_work, _func)

_work 表示要初始化的工作, _func 是工作对应的处理函数。也可以使用 DECLARE_WORK 宏一次性完成工作的创建和初始化,宏定义如下:

#define DECLARE_WORK(n, f)

n 表示定义的工作(work_struct), f 表示工作对应的处理函数。
和 tasklet 一样,工作也是需要调度才能运行的,工作的调度函数为 schedule_work,函数原型如下所示:

bool schedule_work(struct work_struct *work)

函数参数和返回值含义如下:
work: 要调度的工作。
返回值: 0 成功,其他值 失败。
关于工作队列的参考使用示例如下所示:

/* 定义工作(work) */
struct work_struct testwork;

/* work 处理函数 */
void testwork_func_t(struct work_struct *work);
{
    /* work 具体处理内容 */
}

/* 中断处理函数 */
irqreturn_t test_handler(int irq, void *dev_id)
{
    ......
    /* 调度 work */
    schedule_work(&testwork);
    ......
}

/* 驱动入口函数 */
static int __init xxxx_init(void)
{
    ......
    /* 初始化 work */
    INIT_WORK(&testwork, testwork_func_t);
    /* 注册中断处理函数 */
    request_irq(xxx_irq, test_handler, 0, "xxx", &xxx_dev);
    ......
}

设备树中断信息节点

如果使用设备树的话就需要在设备树中设置好中断属性信息, Linux 内核通过读取设备树中的中断属性信息来配置中断。对于中断控制器而言,设备树绑定信息参考文档
Documentation/devicetree/bindings/arm/gic.txt。打开 imx6ull.dtsi 文件,其中的 intc 节点就是I.MX6ULL 的中断控制器节点,节点内容如下所示:

1 intc: interrupt-controller@00a01000 {
2     compatible = "arm,cortex-a7-gic";
3     #interrupt-cells = <3>;
4     interrupt-controller;
5     reg = <0x00a01000 0x1000>,
6     <0x00a02000 0x100>;
7 };

第 2 行, compatible 属性值为“arm,cortex-a7-gic”在 Linux 内核源码中搜索“arm,cortex-a7-gic”即可找到 GIC 中断控制器驱动文件。
第 3 行, #interrupt-cells 和#address-cells、 #size-cells 一样。表示此中断控制器下设备的 cells大小,对于设备而言,会使用 interrupts 属性描述中断信息, #interrupt-cells 描述了 interrupts 属性的 cells 大小,也就是一条信息有几个 cells。每个 cells 都是 32 位整形值,对于 ARM 处理的GIC 来说,一共有 3 个 cells,这三个 cells 的含义如下:
第一个 cells:中断类型, 0 表示 SPI 中断, 1 表示 PPI 中断。
第二个 cells:中断号,对于 SPI 中断来说中断号的范围为 0~987,对于 PPI 中断来说中断号的范围为 0~15。
第三个 cells:标志, bit[3:0]表示中断触发类型,为 1 的时候表示上升沿触发,为 2 的时候表示下降沿触发,为 4 的时候表示高电平触发,为 8 的时候表示低电平触发。 bit[15:8]为 PPI 中
断的 CPU 掩码。
第 4 行, interrupt-controller 节点为空,表示当前节点是中断控制器。对于 gpio 来说, gpio 节点也可以作为中断控制器,比如 imx6ull.dtsi 文件中的 gpio5 节点内容如下所示:

1 gpio5: gpio@020ac000 {
2     compatible = "fsl,imx6ul-gpio", "fsl,imx35-gpio";
3     reg = <0x020ac000 0x4000>;
4     interrupts = <GIC_SPI 74 IRQ_TYPE_LEVEL_HIGH>,
5     <GIC_SPI 75 IRQ_TYPE_LEVEL_HIGH>;
6     gpio-controller;
7     #gpio-cells = <2>;
8     interrupt-controller;
9     #interrupt-cells = <2>;
10 };

第 4 行, interrupts 描述中断源信息,对于 gpio5 来说一共有两条信息,中断类型都是 SPI,触发电平都是 IRQ_TYPE_LEVEL_HIGH。不同之处在于中断源,一个是 74,一个是 75,打开《IMX6ULL 参考手册》的“Chapter 3 Interrupts and DMA Events”章节,找到表 3-1,有如图所示的内容:

从图中可以看出, GPIO5 一共用了 2 个中断号,一个是 74,一个是 75。其中 74 对应 GPIO5_IO00~GPIO5_IO15 这低 16 个 IO, 75 对应 GPIO5_IO16~GPIOI5_IO31 这高 16 位 IO。
第 8 行, interrupt-controller 表明了 gpio5 节点也是个中断控制器,用于控制 gpio5 所有 IO的中断。
第 9 行,将#interrupt-cells 修改为 2。
打开 imx6ull-alientek-emmc.dts 文件,找到如下所示内容:

1 fxls8471@1e {
2     compatible = "fsl,fxls8471";
3     reg = <0x1e>;
4     position = <0>;
5     interrupt-parent = <&gpio5>;
6     interrupts = <0 8>;
7 };

fxls8471 是 NXP 官方的 6ULL 开发板上的一个磁力计芯片, fxls8471 有一个中断引脚链接到了 I.MX6ULL 的 SNVS_TAMPER0 因脚上,这个引脚可以复用为 GPIO5_IO00。
第 5 行, interrupt-parent 属性设置中断控制器,这里使用 gpio5 作为中断控制器。
第 6 行, interrupts 设置中断信息, 0 表示 GPIO5_IO00, 8 表示低电平触发。
简单总结一下与中断有关的设备树属性信息:
①、 #interrupt-cells,指定中断源的信息 cells 个数。
②、 interrupt-controller,表示当前节点为中断控制器。
③、 interrupts,指定中断号,触发方式等。
④、 interrupt-parent,指定父中断,也就是中断控制器。

获取中断号

编写驱动的时候需要用到中断号,我们用到中断号,中断信息已经写到了设备树里面,因此可以通过 irq_of_parse_and_map 函数从 interupts 属性中提取到对应的设备号,函数原型如下:

unsigned int irq_of_parse_and_map(struct device_node *dev,int index)

函数参数和返回值含义如下:

dev: 设备节点。

index:索引号, interrupts 属性可能包含多条中断信息,通过 index 指定要获取的信息。

返回值:中断号。 如果使用 GPIO 的话,可以使用 gpio_to_irq 函数来获取 gpio 对应的中断号,函数原型如下:

int gpio_to_irq(unsigned int gpio)

函数参数和返回值含义如下:
gpio: 要获取的 GPIO 编号。
返回值: GPIO 对应的中断号。

实验

本章实验我们驱动 I.MX6U-ALPHA 开发板上的 KEY0 按键,不过我们采用中断的方式,并且采用定时器来实现按键消抖,应用程序读取按键值并且通过终端打印出来。通过本章我们
可以学习到 Linux 内核中断的使用方法,以及对 Linux 内核定时器的回顾。

修改设备树文件

本章实验使用到了按键 KEY0,按键 KEY0 使用中断模式,因此需要在“key”节点下添加中断相关属性,添加完成以后的“key”节点内容如下所示:

1 key {
2     #address-cells = <1>;
3     #size-cells = <1>;
4     compatible = "atkalpha-key";
5     pinctrl-names = "default";
6     pinctrl-0 = <&pinctrl_key>;
7     key-gpio = <&gpio1 18 GPIO_ACTIVE_LOW>; /* KEY0 */
8     interrupt-parent = <&gpio1>;
9     interrupts = <18 IRQ_TYPE_EDGE_BOTH>; /* FALLING RISING */
10    status = "okay";
11 };

第 8 行,设置 interrupt-parent 属性值为“gpio1”,因为 KEY0 所使用的 GPIO 为GPIO1_IO18,也就是设置 KEY0 的 GPIO 中断控制器为 gpio1。
第 9 行,设置 interrupts 属性,也就是设置中断源,第一个 cells 的 18 表示 GPIO1 组的 18号 IO。 IRQ_TYPE_EDGE_BOTH 定义在文件 include/linux/irq.h 中,定义如下:

76 enum {
77     IRQ_TYPE_NONE = 0x00000000,
78     IRQ_TYPE_EDGE_RISING = 0x00000001,
79     IRQ_TYPE_EDGE_FALLING = 0x00000002,
80     IRQ_TYPE_EDGE_BOTH = (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING),
81     IRQ_TYPE_LEVEL_HIGH = 0x00000004,
82     IRQ_TYPE_LEVEL_LOW = 0x00000008,
83     IRQ_TYPE_LEVEL_MASK = (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH),
......
100 };

从上述代码中可以看出, IRQ_TYPE_EDGE_BOTH 表示上升沿和下降沿同时有效,相当于 KEY0 按下和释放都会触发中断。设备树编写完成以后使用“ make dtbs”命令重新编译设备树,然后使用新编译出来的imx6ull-alientek-emmc.dtb 文件启动 Linux 系统。

驱动程序参考

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/semaphore.h>
#include <linux/timer.h>
#include <linux/of_irq.h>
#include <linux/irq.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>

#define IMX6UIRQ_CNT		1			/* 设备号个数 	*/
#define IMX6UIRQ_NAME		"imx6uirq"	/* 名字 		*/
#define KEY0VALUE			0X01		/* KEY0按键值 	*/
#define INVAKEY				0XFF		/* 无效的按键值 */
#define KEY_NUM				1			/* 按键数量 	*/

/* 中断IO描述结构体 */
struct irq_keydesc {
	int gpio;								/* gpio */
	int irqnum;								/* 中断号     */
	unsigned char value;					/* 按键对应的键值 */
	char name[10];							/* 名字 */
	irqreturn_t (*handler)(int, void *);	/* 中断服务函数 */
};

/* imx6uirq设备结构体 */
struct imx6uirq_dev{
	dev_t devid;			/* 设备号 	 */
	struct cdev cdev;		/* cdev 	*/
	struct class *class;	/* 类 		*/
	struct device *device;	/* 设备 	 */
	int major;				/* 主设备号	  */
	int minor;				/* 次设备号   */
	struct device_node	*nd; /* 设备节点 */
	atomic_t keyvalue;		/* 有效的按键键值 */
	atomic_t releasekey;	/* 标记是否完成一次完成的按键,包括按下和释放 */
	struct timer_list timer;/* 定义一个定时器*/
	struct irq_keydesc irqkeydesc[KEY_NUM];	/* 按键描述数组 */
	unsigned char curkeynum;				/* 当前的按键号 */
};

struct imx6uirq_dev imx6uirq;	/* irq设备 */

/* @description		: 中断服务函数,开启定时器,延时10ms,
 *				  	  定时器用于按键消抖。
 * @param - irq 	: 中断号 
 * @param - dev_id	: 设备结构。
 * @return 			: 中断执行结果
 */
static irqreturn_t key0_handler(int irq, void *dev_id)
{
	struct imx6uirq_dev *dev = (struct imx6uirq_dev *)dev_id;

	dev->curkeynum = 0;
	dev->timer.data = (volatile long)dev_id;
	mod_timer(&dev->timer, jiffies + msecs_to_jiffies(10));	/* 10ms定时 */
	return IRQ_RETVAL(IRQ_HANDLED);
}

/* @description	: 定时器服务函数,用于按键消抖,定时器到了以后
 *				  再次读取按键值,如果按键还是处于按下状态就表示按键有效。
 * @param - arg	: 设备结构变量
 * @return 		: 无
 */
void timer_function(unsigned long arg)
{
	unsigned char value;
	unsigned char num;
	struct irq_keydesc *keydesc;
	struct imx6uirq_dev *dev = (struct imx6uirq_dev *)arg;

	num = dev->curkeynum;
	keydesc = &dev->irqkeydesc[num];

	value = gpio_get_value(keydesc->gpio); 	/* 读取IO值 */
	if(value == 0){ 						/* 按下按键 */
		atomic_set(&dev->keyvalue, keydesc->value);
	}
	else{ 									/* 按键松开 */
		atomic_set(&dev->keyvalue, 0x80 | keydesc->value);
		atomic_set(&dev->releasekey, 1);	/* 标记松开按键,即完成一次完整的按键过程 */			
	}	
}

/*
 * @description	: 按键IO初始化
 * @param 		: 无
 * @return 		: 无
 */
static int keyio_init(void)
{
	unsigned char i = 0;
	int ret = 0;
	
	imx6uirq.nd = of_find_node_by_path("/key");
	if (imx6uirq.nd== NULL){
		printk("key node not find!\r\n");
		return -EINVAL;
	} 

	/* 提取GPIO */
	for (i = 0; i < KEY_NUM; i++) {
		imx6uirq.irqkeydesc[i].gpio = of_get_named_gpio(imx6uirq.nd ,"key-gpio", i);
		if (imx6uirq.irqkeydesc[i].gpio < 0) {
			printk("can't get key%d\r\n", i);
		}
	}
	
	/* 初始化key所使用的IO,并且设置成中断模式 */
	for (i = 0; i < KEY_NUM; i++) {
		memset(imx6uirq.irqkeydesc[i].name, 0, sizeof(imx6uirq.irqkeydesc[i].name));	/* 缓冲区清零 */
		sprintf(imx6uirq.irqkeydesc[i].name, "KEY%d", i);		/* 组合名字 */
		gpio_request(imx6uirq.irqkeydesc[i].gpio, imx6uirq.irqkeydesc[i].name);
		gpio_direction_input(imx6uirq.irqkeydesc[i].gpio);	
		imx6uirq.irqkeydesc[i].irqnum = irq_of_parse_and_map(imx6uirq.nd, i);
#if 0
		imx6uirq.irqkeydesc[i].irqnum = gpio_to_irq(imx6uirq.irqkeydesc[i].gpio);
#endif
		printk("key%d:gpio=%d, irqnum=%d\r\n",i, imx6uirq.irqkeydesc[i].gpio, 
                                         imx6uirq.irqkeydesc[i].irqnum);
	}
	/* 申请中断 */
	imx6uirq.irqkeydesc[0].handler = key0_handler;
	imx6uirq.irqkeydesc[0].value = KEY0VALUE;
	
	for (i = 0; i < KEY_NUM; i++) {
		ret = request_irq(imx6uirq.irqkeydesc[i].irqnum, imx6uirq.irqkeydesc[i].handler, 
		                 IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING, imx6uirq.irqkeydesc[i].name, &imx6uirq);
		if(ret < 0){
			printk("irq %d request failed!\r\n", imx6uirq.irqkeydesc[i].irqnum);
			return -EFAULT;
		}
	}

	/* 创建定时器 */
	init_timer(&imx6uirq.timer);
	imx6uirq.timer.function = timer_function;
	return 0;
}

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量
 * 					  一般在open的时候将private_data指向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int imx6uirq_open(struct inode *inode, struct file *filp)
{
	filp->private_data = &imx6uirq;	/* 设置私有数据 */
	return 0;
}

 /*
  * @description     : 从设备读取数据 
  * @param - filp    : 要打开的设备文件(文件描述符)
  * @param - buf     : 返回给用户空间的数据缓冲区
  * @param - cnt     : 要读取的数据长度
  * @param - offt    : 相对于文件首地址的偏移
  * @return          : 读取的字节数,如果为负值,表示读取失败
  */
static ssize_t imx6uirq_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
	int ret = 0;
	unsigned char keyvalue = 0;
	unsigned char releasekey = 0;
	struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;

	keyvalue = atomic_read(&dev->keyvalue);
	releasekey = atomic_read(&dev->releasekey);

	if (releasekey) { /* 有按键按下 */	
		if (keyvalue & 0x80) {
			keyvalue &= ~0x80;
			ret = copy_to_user(buf, &keyvalue, sizeof(keyvalue));
		} else {
			goto data_error;
		}
		atomic_set(&dev->releasekey, 0);/* 按下标志清零 */
	} else {
		goto data_error;
	}
	return 0;
	
data_error:
	return -EINVAL;
}

/* 设备操作函数 */
static struct file_operations imx6uirq_fops = {
	.owner = THIS_MODULE,
	.open = imx6uirq_open,
	.read = imx6uirq_read,
};

/*
 * @description	: 驱动入口函数
 * @param 		: 无
 * @return 		: 无
 */
static int __init imx6uirq_init(void)
{
	/* 1、构建设备号 */
	if (imx6uirq.major) {
		imx6uirq.devid = MKDEV(imx6uirq.major, 0);
		register_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT, IMX6UIRQ_NAME);
	} else {
		alloc_chrdev_region(&imx6uirq.devid, 0, IMX6UIRQ_CNT, IMX6UIRQ_NAME);
		imx6uirq.major = MAJOR(imx6uirq.devid);
		imx6uirq.minor = MINOR(imx6uirq.devid);
	}

	/* 2、注册字符设备 */
	cdev_init(&imx6uirq.cdev, &imx6uirq_fops);
	cdev_add(&imx6uirq.cdev, imx6uirq.devid, IMX6UIRQ_CNT);

	/* 3、创建类 */
	imx6uirq.class = class_create(THIS_MODULE, IMX6UIRQ_NAME);
	if (IS_ERR(imx6uirq.class)) {
		return PTR_ERR(imx6uirq.class);
	}

	/* 4、创建设备 */
	imx6uirq.device = device_create(imx6uirq.class, NULL, imx6uirq.devid, NULL, IMX6UIRQ_NAME);
	if (IS_ERR(imx6uirq.device)) {
		return PTR_ERR(imx6uirq.device);
	}
	
	/* 5、初始化按键 */
	atomic_set(&imx6uirq.keyvalue, INVAKEY);
	atomic_set(&imx6uirq.releasekey, 0);
	keyio_init();
	return 0;
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit imx6uirq_exit(void)
{
	unsigned int i = 0;
	/* 删除定时器 */
	del_timer_sync(&imx6uirq.timer);	/* 删除定时器 */
		
	/* 释放中断 */
	for (i = 0; i < KEY_NUM; i++) {
		free_irq(imx6uirq.irqkeydesc[i].irqnum, &imx6uirq);
		gpio_free(imx6uirq.irqkeydesc[i].gpio);
	}
	cdev_del(&imx6uirq.cdev);
	unregister_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT);
	device_destroy(imx6uirq.class, imx6uirq.devid);
	class_destroy(imx6uirq.class);
}

module_init(imx6uirq_init);
module_exit(imx6uirq_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("xxx");

应用层序参考

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include "linux/ioctl.h"

/*
 * @description		: main主程序
 * @param - argc 	: argv数组元素个数
 * @param - argv 	: 具体参数
 * @return 			: 0 成功;其他 失败
 */
int main(int argc, char *argv[])
{
	int fd;
	int ret = 0;
	char *filename;
	unsigned char data;
	
	if (argc != 2) {
		printf("Error Usage!\r\n");
		return -1;
	}

	filename = argv[1];
	fd = open(filename, O_RDWR);
	if (fd < 0) {
		printf("Can't open file %s\r\n", filename);
		return -1;
	}

	while (1) {
		ret = read(fd, &data, sizeof(data));
		if (ret < 0) {  /* 数据读取错误或者无效 */
			
		} else {		/* 数据读取正确 */
			if (data)	/* 读取到数据 */
				printf("key value = %#X\r\n", data);
		}
	}
	close(fd);
	return ret;
}

测试

将编译出来 imx6uirq.ko 和 imx6uirqApp 这两个文件拷贝到rootfs/lib/modules/4.1.15 目录中,重启开发板,进入到目录 lib/modules/4.1.15 中,输入如下命令加载 imx6uirq.ko 驱动模块:

depmod //第一次加载驱动的时候需要运行此命令
modprobe imx6uirq.ko //加载驱动

驱动加载成功以后可以通过查看/proc/interrupts 文件来检查一下对应的中断有没有被注册上,输入如下命令:

cat /proc/interrupts

从图可以看出 imx6uirq.c 驱动文件里面的 KEY0 中断已经存在了,触发方式为边沿(Edge),中断号为 49。接下来使用如下命令来测试中断:

./imx6uirqApp /dev/imx6uirq

按下开发板上的 KEY0 键,终端就会输出按键值,如图所示:

从图可以看出,按键值获取成功,并且不会有按键抖动导致的误判发生,说明按键消抖工作正常。此时再查看/proc/interrupts可以看到中断触发次数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/649324.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux进程信号 | 信号保存

阻塞信号 信号其他相关常见概念 实际执行信号的处理动作称为信号递达(Delivery)信号从产生到递达之间的状态,称为信号未决(Pending)。进程可以选择阻塞 (Block )某个信号。被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.注意,阻塞和忽略是…

A Survey of Large Language Models

本文是LLM系列的第一篇文章&#xff0c;针对《A Survey of Large Language Models》的翻译。 大语言模型综述 摘要1 引言2 概述2.1 LLM的背景2.2 GPT系列模型 的技术演化 3 LLMs的资源3.1 公开可用的模型检查点或APIs3.2 常用的语料库3.3 库资源 4 预训练4.1 数据收集4.1.1 数…

图的企业应用-A*算法自动寻路

引言 MC想必大家都玩过,但鸡哥利用A*自动寻路算法来找箱子 箱子里有鸡你太美唱片&#xff0c;和准备好的篮球 当然在这是游戏中找到的宝箱 还得原石x5等一大堆的养成物品 ???等等 ,原神 玩家露出鸡脚了吧! 不应该是 有鸡你太美唱片,还有一条鱼并且给梅里猫的名叫荔枝的? 这…

【MyBatis学习】Spring Boot(SSM)单元测试,不用打包就可以测试我们的项目了,判断程序是否满足需求变得如此简单 ? ? ?

前言: 大家好,我是良辰丫,在上一篇文章中我们学习了MyBatis简单的查询操作,今天来介绍一下Spring Boot(SSM)的一种单元测试,有人可能会感到疑惑,框架里面还有这玩意?什么东东呀,框架里面是没有这的,但是我们简单的学习一下单元测试,可以帮助我们自己测试代码,学习单元测试可以…

SEO留痕霸屏技术原理实现分析

留痕效果 通常是查询某个关键词&#xff0c;出现大量搜索结果网页霸屏&#xff0c;而且都会引导到其他平台或者网站进行浏览和查看。留痕网站和指向网站或平台无关联。 示例图片&#xff1a; 原理分析 首先通过内容和链接很容易明白&#xff0c;本质上就是一个搜索页面&…

OpenAI API升级:新GPT-3.5 Turbo和GPT-4助力AIGC应用大放异彩

theme: orange 前言 北京时间2023年6月13日&#xff0c;OpenAI宣布对其领先的生成型AI模型GPT-3.5 Turbo和GPT-4进行一系列更新&#xff0c;以提高工作场所的人工智能能力。这些改进包括引入全新的函数调用功能、增强的可引导性、GPT-3.5 Turbo的扩展上下文&#xff0c;以及修订…

数值分析第九章节 用Python实现常微分方程初值问题的数值解法

参考书籍&#xff1a;数值分析 第五版 李庆杨 王能超 易大义编 第9章 常微分方程初值问题的数值解法 文章声明&#xff1a;如有发现错误&#xff0c;欢迎批评指正 文章目录 欧拉法后退的欧拉方法梯形方法改进欧拉公式补充龙格—库塔方法线性多步法阿当姆斯显示与隐式公式 9.1引…

5.3.3 因特网的路由协议(三)OSPF协议

5.3.3 因特网的路由协议&#xff08;三&#xff09;OSPF协议 前面我们学习了基于距离向量算法的路由信息协议RIP&#xff08;5.3.2 因特网的路由协议&#xff08;二&#xff09;基于距离向量算法的RIP协议&#xff09;,为了克服RIP协议的局限性于是就有了新的内部网关协议OSPF…

30行代码实现通用无限列表函数

前言&#xff1a; 前两天接到了一个需求&#xff0c;主要功能是实现类似于 B站 消息页面的那种效果&#xff0c;右侧几个 tab 都需要使用到无限加载的功能。 大家都知道&#xff0c;程序员是很懒的&#xff0c;不可能这几个页面全都写一遍重复的逻辑。所以在接到这个需求的时…

HBuilder连接手机模拟器调试,进行抓包

hbuilder连接手机模拟器 1.adb是什么&#xff1f;引用 2. 进行adb路径设置&#xff0c;选中模拟器中的adb路径&#xff0c;配置好端口&#xff0c;夜神模拟器端口&#xff1a;62001 3.运行到Andriod基座 在HBuilder连接模拟器过程中&#xff0c;对接口进行抓包 1.安装抓包工…

Spring Security --- 自定义Filter

简介任何 Spring Web 应用本质上只是一个 servletSecurity Filter在 HTTP 请求到达你的 Controller 之前过滤每一个传入的 HTTP请求Filter请求过滤器可以帮助进行HttpServletRequest请求和HttpServletResponse响应的过滤在自定义的Filter过滤器中可以对请求进行过滤&#xff0c…

控制并发流程,做好线程间的协调

一、概述 1. 什么是控制并发流程&#xff1f; 线程一般是由线程调度器自动控制的&#xff0c;但有些场景需要按照我们程序员的意愿去实现多线程之间相互配合&#xff0c;从而满足业务逻辑。比如&#xff1a; 让线程A等待线程B执行完后再执行等一些相互合作的逻辑&#xff1b…

【表面缺陷检测】基于yolov5的钢轨表面缺陷检测(附代码和数据集,Windows系统)

写在前面: 首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就…

python打包后报错,无法启动,电脑缺少api-ms-win-core-path-11-1-0.dll

参考&#xff1a;《运行打包python程序时报&#xff1a;无法启动此程序&#xff0c;因为计算机中丢失 api-ms-win-core-path-l1-1-0.dll 尝试重新安装该程序以解决此问题。》 原因&#xff1a;python版本较高&#xff0c;打包时的python版本是python3.10&#xff0c;而运行打包…

mdBook介绍及使用——使用 Markdown 创建你自己的博客和电子书

目录 介绍一、下载与创建项目1.下载2.初始化3.结构说明 二、编写文章与启动1.编写文章2.构建3.启动 mdbook 服务 三、其他配置 介绍 mdBook 是一个使用 Markdown 创建书籍的命令行工具。它非常适合创建产品或 API 文档、教程、课程材料或任何需要清晰、易于导航和可定制的演示…

LED开关电源里的PCB回路设计应该怎么做?

LED开关电源的研发速度在最近几年中有了明显的技术飞跃&#xff0c;新产品更新换代的速度也加快了许多。作为最后一个设计环节&#xff0c;PCB的设计也显得尤为重要&#xff0c;因为一旦在这一环节出现问题&#xff0c;那么很可能会对整个的LED开关电源系统产生较多的电磁干扰&…

界面控件DevExtreme UI组件——增强的自定义功能

在本文中&#xff0c;我们将回顾DevExtreme UI组件在v22.2版本主要更新中一系列与自定义相关的增强。 DevExtreme拥有高性能的HTML5 / JavaScript小部件集合&#xff0c;使您可以利用现代Web开发堆栈&#xff08;包括React&#xff0c;Angular&#xff0c;ASP.NET Core&#x…

6、微服务组件openfeign

1、在消费端的项目中引入openfeign依赖 首先需要确保引入了springcloud&#xff0c;因为openfeign依赖与springcloud 在消费端的pom.xml中引入openfeign&#xff0c;父项目中已经引入了springcloud了 <?xml version"1.0" encoding"UTF-8"?> <…

行云创新CloudOS助力蜂巢能源获中国信通院2023云原生应用优秀案例奖

2023 年 6 月 6 日&#xff0c;工业和信息化部主办的ICT 中国高层论坛-云原生产业高峰论坛成功举办&#xff0c;活动期间&#xff0c;中国信通院发布了“2023云原生应用优秀案例奖”获奖名单。其中&#xff0c;蜂巢能源作为中国新能源行业的代表之一&#xff0c;凭借其基于行云…

IKEA EDI项目开源介绍

近期为了帮助广大用户更好地使用 EDI 系统&#xff0c;我们根据以往的项目实施经验&#xff0c;将成熟的 EDI 项目进行开源。用户安装好知行之桥EDI系统之后&#xff0c;只需要下载我们整理好的示例代码&#xff0c;并放置在知行之桥指定的工作区中&#xff0c;即可开始使用。 …