mysql:索引原理与慢查询优化

news2024/11/25 20:51:52

一 索引的原理

1. 索引原理

索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等

本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段......这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另外一方面为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

2. 磁盘IO与预读

前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS(Million Instructions Per Second)的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。

考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。

二 索引的数据结构

前面讲了索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。

如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

###b+树的查找过程 如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

###b+树性质 1.索引字段要尽量的小:通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。 2.索引的最左匹配特性:当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

三 MySQL索引管理

1. 功能

#1. 索引的功能就是加速查找 #2. mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能

2. MySQL的索引分类

普通索引index:加速查找 唯一索引: -主键索引primary key:加速查找+约束(不为空、不能重复) -唯一索引unique:加速查找+约束(不能重复) 联合索引(组合索引): -primary key(id,name):联合主键索引 -unique(id,name):联合唯一索引 -index(id,name):联合普通索引

举个例子来说,比如你在为某商场做一个会员卡的系统。 这个系统有一个会员表 有下列字段: 会员编号 int 会员姓名 varchar(10) 会员身份证号码 varchar(18) 会员电话 varchar(10) 会员住址 varchar(50) 会员备注信息 text 那么这个 会员编号,作为主键,使用 primary 会员姓名 如果要建索引的话,那么就是普通的 index 会员身份证号码 如果要建索引的话,那么可以选择 unique (唯一的,不允许重复) #除此之外还有全文索引,即FULLTEXT 会员备注信息 , 如果需要建索引的话,可以选择全文搜索。 用于搜索很长一篇文章的时候,效果最好。 用在比较短的文本,如果就一两行字的,普通的 index 也可以。 但其实对于全文搜索,我们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来做全文搜索。 #其他的如空间索引SPATIAL,了解即可,几乎不用

3. 索引的两大类型hash与btree

#我们可以在创建上述索引的时候,为其指定索引类型,分两类 hash类型的索引:查询单条快,范围查询慢 btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它) #不同的存储引擎支持的索引类型也不一样 InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引; MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引; Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引; NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引; Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;

4. 创建/删除索引的语法

1 创建索引

#方法一:创建表时
    - 在创建表时就创建
      create table 表名 (
                字段名1  数据类型 [完整性约束条件…],
                字段名2  数据类型 [完整性约束条件…],
                [unique | fulltext | spatial ]   index | key
                [索引名]  (字段名[(长度)]  [asc |desc]) 
                );
#例:
        create table s1(
        id int,
        name char(6),
        age int,
        email varchar(30),
        index(id)   #不是约束条件,故不能直接跟在字段后面
        );

#方法二:CREATE在已存在的表上创建索引
        create  [unique | fulltext | spatial ]  index  索引名 
                     on 表名 (字段名[(长度)]  [asc |desc]) ;

#例    - 在创建表后创建
        create index name on s1(name);#添加普通索引
        create unique index age on s1(age);#添加唯一索引
        create index name on s1(id,name);#添加联合普通索引

#方法三:ALTER TABLE在已存在的表上创建索引
        alter table 表名 add  [unique | fulltext | spatial ] index
                             索引名 (字段名[(长度)]  [asc |desc]) ;
#例:
        alter table s1 add primary key(id);#添加主键索引
        

2 删除索引
# 删除索引:DROP INDEX 索引名 ON 表名字;
#例:
   drop index id on s1;
   drop index name on s1;
   alter table s1 drop primary key; # 删除主键索引

复制

四 测试索引

1. 准备

#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);

#2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
    declare i int default 1;
    while(i<300000)do    #插入比较慢,耗时比较长
        insert into s1 values(i,concat('egon',i),'male',concat('egon',i,'@oldboy'));
        set i=i+1;
    end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号

#3. 查看存储过程
show create procedure auto_insert1\G 

#4. 调用存储过程
call auto_insert1();

复制

2. 在没有索引的前提下测试查询速度

#无索引:从头到尾扫描一遍,所以查询速度很慢
mysql>  select * from s1 where id=333;
+------+---------+--------+----------------+
| id   | name    | gender | email          |
+------+---------+--------+----------------+
|  333 | egon333 | male   | egon333@oldboy |
+------+---------+--------+----------------+
1 row in set (0.17 sec)

mysql> select * from s1 where email='egon333@oldboy';
+------+---------+--------+----------------+
| id   | name    | gender | email          |
+------+---------+--------+----------------+
|  333 | egon333 | male   | egon333@oldboy |
+------+---------+--------+----------------+
1 row in set (0.15 sec)

复制

3. 加上索引

#1. 一定是为搜索条件的字段创建索引,比如select * from s1 where id=333;就需要为id加上索引 #2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,插入删除更新都很慢,只有查询快 比如create index idx on s1(id);会扫描表中所有的数据,然后以id为数据项,创建索引结构,存放于硬盘的表中。 建完以后,再查询就会很快了 #3. 需要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI

ps:我们可以去mysql的data目录下找到该表,可以看到占用的硬盘空间多了

五 正确使用索引

1. 并不是说我们创建了索引就一定会加快查询速度,如果查询的是一个大范围(小范围的话也有提升)或者模糊查询,查询速度并没有太大提升

mysql> select count(*) from s1 where id=1000;
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from s1 where id>1000;
+----------+
| count(*) |
+----------+
|   298999 |
+----------+
1 row in set (0.11 sec)

mysql> select count(*) from s1 where id>1000 and id < 2000;
+----------+
| count(*) |
+----------+
|      999 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from s1 where id>1000 and id < 300000;
+----------+
| count(*) |
+----------+
|   298999 |
+----------+
1 row in set (0.13 sec)

复制

2. 覆盖索引与索引合并

#覆盖索引:
    - 在索引文件中直接获取数据
    http://blog.itpub.net/22664653/viewspace-774667/

#分析
select * from s1 where id=123;
该sql命中了索引,但未覆盖索引。
利用id=123到索引的数据结构中定位到该id在硬盘中的位置,或者说再数据表中的位置。
但是我们select的字段为*,除了id以外还需要其他字段,这就意味着,我们通过索引结构取到id还不够,还需要利用该id再去找到该id所在行的其他字段值,这是需要时间的,很明显,如果我们只select id,就减去了这份苦恼,如下
select id from s1 where id=123;
这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了id在硬盘的地址,速度很快

复制

#索引合并:把多个单列索引合并使用

#分析:
组合索引能做到的事情,我们都可以用索引合并去解决,比如
create index ne on s1(name,email);#组合索引
我们完全可以单独为name和email创建索引

组合索引可以命中:
select * from s1 where name='egon' ;
select * from s1 where name='egon' and email='adf';

索引合并可以命中:
select * from s1 where name='egon' ;
select * from s1 where email='adf';
select * from s1 where name='egon' and email='adf';

乍一看好像索引合并更好了:可以命中更多的情况,但其实要分情况去看,如果是name='egon' and email='adf',那么组合索引的效率要高于索引合并,如果是单条件查,那么还是用索引合并比较合理

复制

3. 若想利用索引达到预想的提高查询速度的效果,我们在添加索引时,必须遵循以下原则

#1.最左前缀匹配原则,非常重要的原则,
create index ix_name_email on s1(name,email,)
- 最左前缀匹配:必须按照从左到右的顺序匹配
select * from s1 where name='egon'; #可以
select * from s1 where name='egon' and email='asdf'; #可以
select * from s1 where email='alex@oldboy.com'; #不可以
mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

#2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

#3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录

#4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);

#5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可

复制

1 加索引提速:范围
mysql> select count(*) from s1 where id=1000;
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.12 sec)

mysql> select count(*) from s1 where id>1000;
+----------+
| count(*) |
+----------+
|   298999 |
+----------+
1 row in set (0.12 sec)

mysql> create index a on s1(id)
    -> ;
Query OK, 0 rows affected (3.21 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select count(*) from s1 where id=1000;
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from s1 where id>1000;
+----------+
| count(*) |
+----------+
|   298999 |
+----------+
1 row in set (0.12 sec)

mysql> select count(*) from s1 where id>1000 and id < 2000;
+----------+
| count(*) |
+----------+
|      999 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from s1 where id>1000 and id < 300000;
+----------+
| count(*) |
+----------+
|   298999 |
+----------+
1 row in set (0.13 sec)



3 区分度低的字段不能加索引
mysql> select count(*) from s1 where name='xxx';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from s1 where name='egon';    
+----------+
| count(*) |
+----------+
|   299999 |
+----------+
1 row in set (0.19 sec)


mysql> select count(*) from s1 where name='egon' and age=123123123123123;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.45 sec)

mysql> create index c on s1(age);
Query OK, 0 rows affected (3.03 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select count(*) from s1 where name='egon' and age=123123123123123;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from s1 where name='egon' and age=10;
+----------+
| count(*) |
+----------+
|   299999 |
+----------+
1 row in set (0.35 sec)


mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and id < 4000;
+----------+
| count(*) |
+----------+
|      999 |
+----------+
1 row in set (0.00 sec)


mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.47 sec)

mysql> create index d on s1(email);
Query OK, 0 rows affected (4.83 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

mysql> drop index a on s1;
Query OK, 0 rows affected (0.10 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> drop index b on s1;
Query OK, 0 rows affected (0.09 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> drop index c on s1;
Query OK, 0 rows affected (0.09 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> desc s1;
+-------+-------------+------+-----+---------+-------+
| Field | Type        | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id    | int(11)     | NO   |     | NULL    |       |
| name  | char(20)    | YES  |     | NULL    |       |
| age   | int(11)     | YES  |     | NULL    |       |
| email | varchar(30) | YES  | MUL | NULL    |       |
+-------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

5 增加联合索引,关于范围查询的字段要放到后面
 select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
index(name,email,age,id)

 select count(*) from s1 where name='egon' and age> 10 and id=3000 and email='xxxx';
index(name,email,id,age)

 select count(*) from s1 where name like 'egon' and age= 10 and id=3000 and email='xxxx';
index(email,id,age,name)


mysql> desc s1;
+-------+-------------+------+-----+---------+-------+
| Field | Type        | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id    | int(11)     | NO   |     | NULL    |       |
| name  | char(20)    | YES  |     | NULL    |       |
| age   | int(11)     | YES  |     | NULL    |       |
| email | varchar(30) | YES  |     | NULL    |       |
+-------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> create index xxx on s1(age,email,name,id);
Query OK, 0 rows affected (6.89 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select count(*) from s1 where name='egon' and age=10 and id>3000 and email='xxxx';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

6. 最左前缀匹配:必须按照从左到右的顺序匹配
index(id,age,email,name)
#条件中一定要出现id
id
id age
id email
id name

email #不行
mysql> select count(*) from s1 where id=3000;
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.11 sec)

mysql> create index xxx on s1(id,name,age,email);
Query OK, 0 rows affected (6.44 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql>  select count(*) from s1 where id=3000;
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.00 sec)

mysql>  select count(*) from s1 where name='egon';
+----------+
| count(*) |
+----------+
|   299999 |
+----------+
1 row in set (0.16 sec)

mysql>  select count(*) from s1 where email='egon3333@oldboy.com';
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.15 sec)

mysql>  select count(*) from s1 where id=1000 and email='egon3333@oldboy.com';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

mysql>  select count(*) from s1 where email='egon3333@oldboy.com' and id=3000;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)







6.索引列不能参与计算,保持列“干净”

mysql> select count(*) from s1 where id=3000;
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.11 sec)

mysql> create index xxx on s1(id,name,age,email);
Query OK, 0 rows affected (6.44 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql>  select count(*) from s1 where id=3000;
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.00 sec)

mysql>  select count(*) from s1 where name='egon';
+----------+
| count(*) |
+----------+
|   299999 |
+----------+
1 row in set (0.16 sec)

mysql>  select count(*) from s1 where email='egon3333@oldboy.com';
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.15 sec)

mysql>  select count(*) from s1 where id=1000 and email='egon3333@oldboy.com';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

mysql>  select count(*) from s1 where email='egon3333@oldboy.com' and id=3000;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

复制

最左前缀示范

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.39 sec)

mysql> create index idx on s1(id,name,email,gender); #未遵循最左前缀
Query OK, 0 rows affected (15.27 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.43 sec)


mysql> drop index idx on s1;
Query OK, 0 rows affected (0.16 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> create index idx on s1(name,email,gender,id); #遵循最左前缀
Query OK, 0 rows affected (15.97 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.03 sec)

复制

索引无法命中的情况需要注意:

- like '%xx'
    select * from tb1 where email like '%cn';
    
    
- 使用函数
    select * from tb1 where reverse(email) = 'wupeiqi';
    
    
- or
    select * from tb1 where nid = 1 or name = 'seven@live.com';
    
    
    特别的:当or条件中有未建立索引的列才失效,以下会走索引
            select * from tb1 where nid = 1 or name = 'seven';
            select * from tb1 where nid = 1 or name = 'seven@live.com' and email = 'alex'
            
            
- 类型不一致
    如果列是字符串类型,传入条件是必须用引号引起来,不然...
    select * from tb1 where email = 999;
    
普通索引的不等于不会走索引
- !=
    select * from tb1 where email != 'alex'
    
    特别的:如果是主键,则还是会走索引
        select * from tb1 where nid != 123
- >
    select * from tb1 where email > 'alex'
    
    
    特别的:如果是主键或索引是整数类型,则还是会走索引
        select * from tb1 where nid > 123
        select * from tb1 where num > 123
        
        
#排序条件为索引,则select字段必须也是索引字段,否则无法命中
- order by
    select name from s1 order by email desc;
    当根据索引排序时候,select查询的字段如果不是索引,则不走索引
    select email from s1 order by email desc;
    特别的:如果对主键排序,则还是走索引:
        select * from tb1 order by nid desc;
 
- 组合索引最左前缀
    如果组合索引为:(name,email)
    name and email       -- 使用索引
    name                 -- 使用索引
    email                -- 不使用索引


- count(1)或count(列)代替count(*)在mysql中没有差别了

- create index xxxx  on tb(title(19)) #text类型,必须制定长度

复制

其他注意事项

- 避免使用select * - count(1)或count(列) 代替 count(*) - 创建表时尽量时 char 代替 varchar - 表的字段顺序固定长度的字段优先 - 组合索引代替多个单列索引(经常使用多个条件查询时) - 尽量使用短索引 - 使用连接(JOIN)来代替子查询(Sub-Queries) - 连表时注意条件类型需一致 - 索引散列值(重复高的)不适合建索引,例:性别不适合

六 查询优化神器-explain

关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。

执行计划:让mysql预估执行操作(一般正确)
    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
    id,email
    
    慢:
        select * from userinfo3 where name='alex'
        
        explain select * from userinfo3 where name='alex'
        type: ALL(全表扫描)
            select * from userinfo3 limit 1;
    快:
        select * from userinfo3 where email='alex'
        type: const(走索引)

复制

七 慢查询优化的基本步骤

0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE 1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高 2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询) 3.order by limit 形式的sql语句让排序的表优先查 4.了解业务方使用场景 5.加索引时参照建索引的几大原则 6.观察结果,不符合预期继续从0分析

八 慢日志管理

慢日志 - 执行时间 > 10 - 未命中索引 - 日志文件路径 配置: - 内存 show variables like '%query%'; show variables like '%queries%'; set global 变量名 = 值 - 配置文件 mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini' my.conf内容: slow_query_log = ON slow_query_log_file = D:/.... 注意:修改配置文件之后,需要重启服务

MySQL日志管理 ======================================================== 错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息 二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 以外的操作 查询日志: 记录查询的信息 慢查询日志: 记录执行时间超过指定时间的操作 中继日志: 备库将主库的二进制日志复制到自己的中继日志中,从而在本地进行重放 通用日志: 审计哪个账号、在哪个时段、做了哪些事件 事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/647313.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Shiro】第一章 权限概述

目录 1、什么是权限 2、认证概念 3、授权概念​​​​​​​ 1、什么是权限 权限管理&#xff0c;一般指根据系统设置的安全策略或者安全规则&#xff0c;用户可以访问而且只能访问自己被授权的资源&#xff0c;不多不少。权限管理几乎出现在任何系统里面&#xff0c;只要…

玩转ChatGPT:R代码Debug一例

一、写在前面 今天家里领导发来求助&#xff0c;说是用GPT-3.5写一个 计算mRNA干性指数 的R代码&#xff0c;运行报错。让我用GPT-4帮忙Debug一哈。 搞了半小时&#xff0c;还是有亿点感悟&#xff0c;写段文字记录记录。 二、踩坑过程 &#xff08;1&#xff09;先看原始的…

渗透测试报告怎么写?记得收藏好哦

目录 1、准备好渗透测试记录 2、撰写渗透测试报告书 报告书的撰写建议 1、重点 2、图表重于文字 3、结果与建议 总结&#xff1a; 1、准备好渗透测试记录 测试记录是执行过程的日志&#xff0c;在每日测试工作结束后&#xff0c;应将当日的成果做成记录&#xff0c;虽然…

【Spring学习之更简单的读取和存储Bean对象】属性注入,set注入,构造方法注入

前言&#xff1a; &#x1f49e;&#x1f49e;今天我们依然是学习Spring&#xff0c;这里我们会更加了解Spring的知识&#xff0c;知道Spring是怎么更加简单的读取和存储Bean对象的。也会让大家对Spring更加了解。 &#x1f49f;&#x1f49f;前路漫漫&#xff0c;希望大家坚持…

现在的00后,卷死了呀....

都说00后躺平了&#xff0c;但是有一说一&#xff0c;该卷的还是卷。这不&#xff0c;三月份春招我们公司来了个00后&#xff0c;工作没两年&#xff0c;跳槽到我们公司起薪23K&#xff0c;都快接近我了。 后来才知道人家是个卷王&#xff0c;从早干到晚就差搬张床到工位睡觉了…

数据科学之数据可视化——Tableau可视化气泡图

大家好&#xff0c;我是大鹏&#xff0c;今天给大家分享一个新的一个知识“气泡图”。 气泡图就是用气泡的大小和颜色表示不同的数据。

【RabbitMQ教程】第三章 —— RabbitMQ - 发布确认

&#x1f4a7; 【 R a b b i t M Q 教程】第三章—— R a b b i t M Q − 发布确认 \color{#FF1493}{【RabbitMQ教程】第三章 —— RabbitMQ - 发布确认} 【RabbitMQ教程】第三章——RabbitMQ−发布确认&#x1f4a7; &#x1f337; 仰望天空&#xff0c;妳我亦是行人…

青大数据结构【2020】【三分析计算】

关键字&#xff1a; 无相连通图、Prim算法最小生成树、哈希函数、线性探测法、平均查找长度 1.对于一个带权连通无向图G&#xff0c;可以采用Prim算法构造出从某个顶点v出发的最小生成树&#xff0c;问该最小生成树是否一定包含从顶点v到其他所有顶点的最短路径。如果回答是&a…

docker 网络理论知识点 - CNM 和命名空间

Network 目录 1 network namespace1.1 动手小实验 2 回到 docker2.1 driver and docker02.2 network2.3 网桥 docker0 3 总结 1 network namespace 1.1 动手小实验 网络命名空间。linux kernel 提供的网络虚拟化的功能。创建多个隔离的网络空间。每个空间内 firewall, ether …

Matplotlib学习

文章目录 Matplotlib曲线图的绘制饼图的绘制直方图的绘制散点图的绘制 Matplotlib 在深度学习的实验中&#xff0c;图形的绘制和数据的可视化非常重要。Matplotlib是用于绘制图形的库&#xff0c;使用Matplotlib可以轻松地绘制图形和实现数据的可视化。这里&#xff0c;我们来…

Linux学习之文件信息和文件类型

使用ls -l可以看到当前目录下除隐藏文件之外的文件。 我们拿下边这行信息解释一下&#xff1a; -rw-r--r-- 1 root root 10562254 Mar 9 00:08 cmake-3.25.3.tar.gz Linux中“一切皆文件”&#xff0c;首先需要明确这点&#xff0c;因为对于不同的文件类型&#xff0c;后边的…

前后端分离项目之修改存储信息

本文章基于&#xff1a;前后端分离项目之登录页面(前后端请求、响应和连接数据库)_小俱的一步步的博客-CSDN博客 目录 一、编辑者操作步骤 二、代码实现步骤 以下以存储学生信息为例 一、编辑者操作步骤 1.在前端“编辑”按钮&#xff0c;点击时弹出弹框&#xff0c;出现…

某大厂测试开发面试总结,大家可以参考一下

目录 前言 1、RecyclerView和ListView的区别 2、技术选型的依据 3、原生monkey的原理 4、monkey和monkeyRunner区别 5、appium和uiautomator的关系或者Airtest和uiautomator的区别 6、Android进程间通信方式 7、内存溢出与内存泄露的区别及内存泄漏的原因 8、性能数据收…

mac版Excel表格中出现E+

相信很多人在使用Excel的时候都遇到过单元格变成###的情况&#xff0c;这是由于单元格列宽不够造成的&#xff0c;只需要增加列宽就可以正常显示。如果你在使用Excel的过程中遇到过出现"E"这种情况&#xff0c;此时不要惊慌&#xff0c;这是Excel自动对很大或很小的数…

C语言实现汉诺塔问题【图解和演示】

大家好&#xff0c;我是纪宁。 在高中时&#xff0c;曾有一位故友问过我类似这种移盘子的题目&#xff08;数列&#xff09;&#xff0c;我当时一脸茫然&#xff0c;上了大学才知道原来是著名的汉诺塔问题 本文&#xff0c;就将介绍汉诺问题的由来、原理、及C语言如何实现 目录…

ZooKeeper【实际案例】

服务器动态上下线监听 需求 在我们的分布式系统中&#xff0c;有多台服务器节点&#xff0c;我们希望任意一台客户端都能实时收到服务器节点的上下线。 实现 服务器节点上线以后自动去zookeeper目录注册自己的节点信息&#xff08;创建Znode临时节点&#xff09;&#xff0c…

无人机侦察区域覆盖

irvingvasquez/ocpp: Optimal coverage path planning (github.com) matlab2020可运行

MySQL数据表进阶操作

MySQL数据表高级操作 一、克隆表二、清空表三、创建临时表四、创建外键约束五、MySQL中6种常见的约束&#xff1a;六、数据库用户管理 一、克隆表 将数据表的数据记录生成到新的表中 被克隆的对象&#xff1a; 方法一&#xff1a; 第一步&#xff1a;create table 新表名 li…

2023年简历石沉大海,别投了,软件测试岗位饱和了....

各大互联网公司的接连裁员&#xff0c;政策限制的行业接连消失&#xff0c;让今年的求职雪上加霜&#xff0c;想躺平却没有资本&#xff0c;还有人说软件测试岗位饱和了&#xff0c;对此很多求职者深信不疑&#xff0c;因为投出去的简历回复的越来越少了。 另一面企业招人真的…

机器学习_预测概率校准

我们在建模时通常根据准确性或准确性来评估其预测模型&#xff0c;但几乎不会问自己&#xff1a;“我的模型能够预测实际概率吗&#xff1f;” 但是&#xff0c;从商业的角度来看&#xff0c;准确的概率估计是非常有价值的&#xff08;准确的概率估计有时甚至比好的精度更有价值…