Synchronized 偏向锁、轻量级锁、自旋锁、锁消除

news2025/1/12 2:48:18

一、重量级锁

  上篇文章中向大家介绍了Synchronized的用法及其实现的原理。现在我们应该知道,Synchronized是通过对象内部的一个叫做监视器锁(monitor)来实现的。但是监视器锁本质又是依赖于底层的操作系统的Mutex Lock来实现的。而操作系统实现线程之间的切换这就需要从用户态转换到核心态,这个成本非常高,状态之间的转换需要相对比较长的时间,这就是为什么Synchronized效率低的原因。因此,这种依赖于操作系统Mutex Lock所实现的锁我们称之为“重量级锁”。JDK中对Synchronized做的种种优化,其核心都是为了减少这种重量级锁的使用。JDK1.6以后,为了减少获得锁和释放锁所带来的性能消耗,提高性能,引入了“轻量级锁”和“偏向锁”。

二、轻量级锁

  锁的状态总共有四种:无锁状态、偏向锁、轻量级锁和重量级锁。随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁(但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级)。JDK 1.6中默认是开启偏向锁和轻量级锁的,我们也可以通过-XX:-UseBiasedLocking来禁用偏向锁。锁的状态保存在对象的头文件中,以32位的JDK为例:

锁状态

25 bit

4bit

1bit

2bit

23bit

2bit

是否是偏向锁

锁标志位

轻量级锁

指向栈中锁记录的指针

00

重量级锁

指向互斥量(重量级锁)的指针

10

GC标记

11

偏向锁

线程ID

Epoch

对象分代年龄

1

01

无锁

对象的hashCode

对象分代年龄

0

01

  “轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的。但是,首先需要强调一点的是,轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量级锁使用产生的性能消耗。在解释轻量级锁的执行过程之前,先明白一点,轻量级锁所适应的场景是线程交替执行同步块的情况,如果存在同一时间访问同一锁的情况,就会导致轻量级锁膨胀为重量级锁。

1、轻量级锁的加锁过程

  (1)在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为 Displaced Mark Word。这时候线程堆栈与对象头的状态如图2.1所示。

  (2)拷贝对象头中的Mark Word复制到锁记录中。

  (3)拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤(3),否则执行步骤(4)。

  (4)如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如图2.2所示。

  (5)如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。 而当前线程便尝试使用自旋来获取锁,自旋就是为了不让线程阻塞,而采用循环去获取锁的过程。

2、轻量级锁的解锁过程:

  (1)通过CAS操作尝试把线程中复制的Displaced Mark Word对象替换当前的Mark Word。

  (2)如果替换成功,整个同步过程就完成了。

  (3)如果替换失败,说明有其他线程尝试过获取该锁(此时锁已膨胀),那就要在释放锁的同时,唤醒被挂起的线程。

三、偏向锁

  引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径,因为轻量级锁的获取及释放依赖多次CAS原子指令,而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令(由于一旦出现多线程竞争的情况就必须撤销偏向锁,所以偏向锁的撤销操作的性能损耗必须小于节省下来的CAS原子指令的性能消耗)。上面说过,轻量级锁是为了在线程交替执行同步块时提高性能,而偏向锁则是在只有一个线程执行同步块时进一步提高性能。

1、偏向锁获取过程:

  (1)访问Mark Word中偏向锁的标识是否设置成1,锁标志位是否为01——确认为可偏向状态。

  (2)如果为可偏向状态,则测试线程ID是否指向当前线程,如果是,进入步骤(5),否则进入步骤(3)。

  (3)如果线程ID并未指向当前线程,则通过CAS操作竞争锁。如果竞争成功,则将Mark Word中线程ID设置为当前线程ID,然后执行(5);如果竞争失败,执行(4)。

  (4)如果CAS获取偏向锁失败,则表示有竞争。当到达全局安全点(safepoint)时获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码。

  (5)执行同步代码。

2、偏向锁的释放:

偏向锁的撤销在上述第四步骤中有提到偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动去释放偏向锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有字节码正在执行),它会首先暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态,撤销偏向锁后恢复到未锁定(标志位为“01”)或轻量级锁(标志位为“00”)的状态。

3、重量级锁、轻量级锁和偏向锁之间转换

四、其他优化

1、适应性自旋(Adaptive Spinning):从轻量级锁获取的流程中我们知道当线程在获取轻量级锁的过程中执行CAS操作失败时,是要通过自旋来获取重量级锁的。问题在于,自旋是需要消耗CPU的,如果一直获取不到锁的话,那该线程就一直处在自旋状态,白白浪费CPU资源。解决这个问题最简单的办法就是指定自旋的次数,例如让其循环10次,如果还没获取到锁就进入阻塞状态。但是JDK采用了更聪明的方式——适应性自旋,简单来说就是线程如果自旋成功了,则下次自旋的次数会更多,如果自旋失败了,则自旋的次数就会减少。

2、锁粗化(Lock Coarsening):锁粗化的概念应该比较好理解,就是将多次连接在一起的加锁、解锁操作合并为一次,将多个连续的锁扩展成一个范围更大的锁。举个例子:

package com.paddx.test.string;
  
  public class StringBufferTest {
      StringBuffer stringBuffer = new StringBuffer();
  
      public void append(){
          stringBuffer.append("a");
          stringBuffer.append("b");
          stringBuffer.append("c");
     }
 }

复制

这里每次调用stringBuffer.append方法都需要加锁和解锁,如果虚拟机检测到有一系列连串的对同一个对象加锁和解锁操作,就会将其合并成一次范围更大的加锁和解锁操作,即在第一次append方法时进行加锁,最后一次append方法结束后进行解锁。

3、锁消除(Lock Elimination):锁消除即删除不必要的加锁操作。根据代码逃逸技术,如果判断到一段代码中,堆上的数据不会逃逸出当前线程,那么可以认为这段代码是线程安全的,不必要加锁。看下面这段程序:

package com.paddx.test.concurrent;
  
  public class SynchronizedTest02 {
  
      public static void main(String[] args) {
          SynchronizedTest02 test02 = new SynchronizedTest02();
          //启动预热
          for (int i = 0; i < 10000; i++) {
              i++;
         }
         long start = System.currentTimeMillis();
         for (int i = 0; i < 100000000; i++) {
             test02.append("abc", "def");
         }
         System.out.println("Time=" + (System.currentTimeMillis() - start));
     }
 
     public void append(String str1, String str2) {
         StringBuffer sb = new StringBuffer();
         sb.append(str1).append(str2);
     }
 }

复制

虽然StringBuffer的append是一个同步方法,但是这段程序中的StringBuffer属于一个局部变量,并且不会从该方法中逃逸出去,所以其实这过程是线程安全的,可以将锁消除。下面是我本地执行的结果:

为了尽量减少其他因素的影响,这里禁用了偏向锁(-XX:-UseBiasedLocking)。通过上面程序,可以看出消除锁以后性能还是有比较大提升的。

五、总结

  本文重点介绍了JDk中采用轻量级锁和偏向锁等对Synchronized的优化,但是这两种锁也不是完全没缺点的,比如竞争比较激烈的时候,不但无法提升效率,反而会降低效率,因为多了一个锁升级的过程,这个时候就需要通过-XX:-UseBiasedLocking来禁用偏向锁。下面是这几种锁的对比:

优点

缺点

适用场景

偏向锁

加锁和解锁不需要额外的消耗,和执行非同步方法比仅存在纳秒级的差距。

如果线程间存在锁竞争,会带来额外的锁撤销的消耗。

适用于只有一个线程访问同步块场景。

轻量级锁

竞争的线程不会阻塞,提高了程序的响应速度。

如果始终得不到锁竞争的线程使用自旋会消耗CPU。

追求响应时间。 同步块执行速度非常快。

重量级锁

线程竞争不使用自旋,不会消耗CPU。

线程阻塞,响应时间缓慢。

追求吞吐量。 同步块执行速度较长。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/643820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【从Spring Cloud到Spring Cloud Alibaba,这些改变你都知道吗?】—— 每天一点小知识

&#x1f4a7; 从 S p r i n g C l o u d 到 S p r i n g C l o u d A l i b a b a &#xff0c;这些改变你都知道吗&#xff1f; \color{#FF1493}{从Spring Cloud到Spring Cloud Alibaba&#xff0c;这些改变你都知道吗&#xff1f;} 从SpringCloud到SpringCloudAlibaba&#…

【LeetCode训练营 189】轮转数组详解

&#x1f4af; 博客内容&#xff1a;【LeetCode训练营 189】轮转数组详解 &#x1f600; 作  者&#xff1a;陈大大陈 &#x1f680; 个人简介&#xff1a;一个正在努力学技术的准前端&#xff0c;专注基础和实战分享 &#xff0c;欢迎私信&#xff01; &#x1f496; 欢迎大…

Tensorflow训练代码1.x接口自动升级2.x踩坑记录

Tensorflow训练代码1.x接口自动升级2.x踩坑记录 TF准备工作环境问题解决自动升级脚本&#xff0c;从TF1.0调通到TF2.0 一起学AI系列博客&#xff1a;目录索引 本文小结Tensorflow训练代码1.x接口自动升级2.x踩坑过程和问题解决的方法。 TF准备工作 Tensorflow环境准备 前提已…

【MySQL高级篇笔记-多版本并发控制MVCC(下) 】

此笔记为尚硅谷MySQL高级篇部分内容 目录 一、什么是MVCC 二、快照读与当前读 1、快照读 2、当前读 三、复习 1、再谈隔离级别 2、隐藏字段、Undo Log版本链 四、MVCC实现原理之ReadView 1、什么是ReadView 2、设计思路 3、ReadView的规则 4、MVCC整体操作流程…

操作系统(5.2)--请求分页储存管理模式

目录 请求分页的硬件支持 1.页表机制 2.缺页中断机构 3.地址变换机构 请求分页中的内存分配 1.最小物理块数的确定 2.内存分配策略 3.物理块分配算法(采用固定分配策略时) 页面调度策略 1.何时调入页面 2.从何处调入页面 3.页面调入过程 请求分页的硬件支持 内存、…

基础知识学习---牛客网C++面试宝典(四)C/C++基础之STL

1、本栏用来记录社招找工作过程中的内容&#xff0c;包括基础知识学习以及面试问题的记录等&#xff0c;以便于后续个人回顾学习&#xff1b; 暂时只有2023年3月份&#xff0c;第一次社招找工作的过程&#xff1b; 2、个人经历&#xff1a; 研究生期间课题是SLAM在无人机上的应…

TCP协议流程详解,抓包分析

目录 TCP概念TCP工作层TCP协议头部解析TCP抓包解析TCP三次握手&#xff0c;数据收发&#xff0c;四次挥手抓包TCP状态迁移 TCP概念 传输控制协议&#xff08;TCP&#xff0c;Transmission Control Protocol&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议&…

MyBatis操作数据库(查询功能)

目录 一、MyBatis的概念 二、配置MyBits环境 三、 MyBatis连接数据库查询操作&#xff08;示例&#xff09; 创建MySQL数据库表 配置MyBatis 配置连接数据库和MyBatis xml文件 ​编辑 四、添加业务代码 实体类entity 数据持久层mapper 创建接口类 创建xml文件 服务层…

偏向锁、轻量级锁、重量级锁、自旋锁、自适应自旋锁

1. 偏向锁 偏向锁就是在运行过程中&#xff0c;对象的锁偏向某个线程。即在开启偏向锁机制的情况下&#xff0c;某个线程获得锁&#xff0c;当该线程下次再想要获得锁时&#xff0c;不需要重新申请获得锁&#xff08;即忽略synchronized关键词&#xff09;&#xff0c;直接就可…

python 房价数据可视化以数据缺失处理、及回归算法

基本信息概述 房价数据为他国地区使用工具为JupyterLab、python3用到的包 绘图包&#xff1a;seaborn、matplotlib数据处理包&#xff1a;numpy、pandas统计计算包&#xff1a;math、scipy回归模型包&#xff1a;make_pipeline、 RobustScaler、ElasticNet,Lasso、KernelRidge…

设计模式(十四):行为型之策略模式

设计模式系列文章 设计模式(一)&#xff1a;创建型之单例模式 设计模式(二、三)&#xff1a;创建型之工厂方法和抽象工厂模式 设计模式(四)&#xff1a;创建型之原型模式 设计模式(五)&#xff1a;创建型之建造者模式 设计模式(六)&#xff1a;结构型之代理模式 设计模式…

Python使用最新版pyinstaller将项目或程序打包成exe或者mac中的可执行文件

1、pyinstaller的说明&#xff1a; pyinstaller 能够在 Windows、Linux、Mac 等操作系统下将 Python 源文件打包&#xff0c;通过对源文件打包&#xff0c; Python 程序可以在没有安装 Python 的环境中运行&#xff0c;也可以作为一个独立文件方便传递和管理。 PyInstaller 支…

进程管道:父进程和子进程

在接下来的对pipe调用的研究中&#xff0c;我们将学习如何在子进程中运行一个与其父进程完全不同的另外一个程序&#xff0c;而不是仅仅运行一个相同程序。我们用exec调用来完成这一工作。这里的一个难点是&#xff0c;通过exec调用的进程需要知道应该访问哪个文件描述符。在前…

设计模式(十三):行为型之模板方法模式

设计模式系列文章 设计模式(一)&#xff1a;创建型之单例模式 设计模式(二、三)&#xff1a;创建型之工厂方法和抽象工厂模式 设计模式(四)&#xff1a;创建型之原型模式 设计模式(五)&#xff1a;创建型之建造者模式 设计模式(六)&#xff1a;结构型之代理模式 设计模式…

S200, S1700, S5700交换机忘记密码怎么办(huawei)

目录 交换机忘记密码怎么办&#xff1f;如何修改或清除密码&#xff1f; 简介 一&#xff1a;修改了所有默认密码&#xff0c;还忘记了所有密码 二&#xff1a;忘记了Console口登录密码 方法一&#xff1a;通过STelnet/Telnet登录设备修改Console口密码 方法二&#xff1…

RV1126笔记三十六:PaddleOCR环境搭建一

若该文为原创文章,转载请注明原文出处。 在前面测试过PaddleOCR的文字识别功能,现在自己搭建训练模型并测试。 这篇主要是环境搭建,环境为win10无GPU. 1、创建环境 # 创建paddle环境 conda create -n paddle python=3.8 # 查看环境 conda env list # 切换环境 conda acti…

第三章 模型篇:模型与模型的搭建

写在前面的话 这部分只解释代码&#xff0c;不对线性层(全连接层)&#xff0c;卷积层等layer的原理进行解释。 尽量写的比较全了&#xff0c;但是自身水平有限&#xff0c;不太确定是否有遗漏重要的部分。 教程参考&#xff1a; https://pytorch.org/tutorials/ https://githu…

RK3588平台开发系列讲解(以太网篇)SGMII和RGMII接口特性

文章目录 一、MAC 与 PHY的连接二、MAC 与 PHY 在OSI 中位置2.1、网络层2.2、数据链路层2.3、物理层三、RGMII四、SGMII沉淀、分享、成长,让自己和他人都能有所收获!😄 一、MAC 与 PHY的连接 从硬件的角度看,以太网接口电路主要由MAC控制器和物理层PHY芯片两部分组成。 以…

Redis 五大数据类型/结构

Redis 五大数据类型/结构 操作文档 官方文档: https://redis.io/commands 中文文档: http://redisdoc.com/ Redis 数据存储格式 一句话: redis 自身是一个Map&#xff0c;其中所有的数据都是采用key : value 的形式存储 key 是字符串&#xff0c;value 是数据&#xff0c;数…

流媒体接入服务的一般模型

0x00 背景说明 媒体接入服务用来实现媒体资源(resource)的接收和发送&#xff0c;在有限范围内实现不同接入协议的转换。 0x01 一般模型 媒体传输通道的建立步骤通常分为两个阶段&#xff1a; 握手/协商媒体传输 其中&#xff0c;握手/协商操作通常包含&#xff1a; 媒体…