1.多传感器融合的定义
传感器数据融合的定义可以概括为把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层融合、特征层融合、决策层融合。
(1)数据级融合。针对传感器采集的数据,依赖于传感器类型,进行同类数据的融合。数据级的融合要处理的数据都是在相同类别的传感器下采集,所以数据融合不能处理异构 数据。
(2)特征级融合。特征级融合,指的是提取所采集数据包含的特征向量,用来体现所监测物理量的属性,这是面向监测对象特征的融合。如在图像数据的融合中,可以采用边沿的特征信息,来代替全部数据信息。
(3)决策级融合。决策级融合,指的是根据特征级融合所得到的数据特征,进行 一定的判别、分类,以及简单的逻辑运算,根据应用需求进行较高级的决策,是高级的融合。决策级融合是面向应用的融合。比如在森林火灾的监测监控系统中,通过对于温度、湿度和风力等数据特征的融合,可以断定森林的干燥程度及发生火灾的可能性等。这样,需要发送的数据就不是温湿度的值以及风力的大小,而只是发送发生火灾的可能性及危害程度等。在传感网络的具体数据融合实现中,可以根据应用的特点来选择融合方式。
2.多传感器融合的概念
想要更进一步了解多传感器融合技术,就要先了解多传感器融合技术的几个概念。
①硬件同步、硬同步:使用同一种硬件同时发布触发采集命令,实现各传感器采集、测量的时间同步。做到同一时刻采集相同的信息。
②软件同步:时间同步、空间同步。
③时间同步、时间戳同步、软同步:通过统一的主机给各个传感器提供基准时间,各传感器根据已经校准后的各自时间为各自独立采集的数据加上时间戳信息,可以做到所有传感器时间戳同步,但由于各个传感器各自采集周期相互独立,无法保证同一时刻采集相同的信息。
④空间同步:将不同传感器坐标系的测量值转换到同一个坐标系中,其中激光传感器在高速移动的情况下需要考虑当前速度下的帧内位移校准。
3.多传感器融合技术对比
接下来具体对比多传感器融合技术的前融合、中融合与后融合技术。
- 前融合算法,也就是数据级融合
1、通常意义上的只有一个感知的算法。对融合后的多维综合数据进行感知。
2、在原始层把数据都融合在一起,融合后的数据类似一个Super传感器,而且这个传感器不仅有能力可以看到红外线,还有能力可以看到摄像头或者RGB,也有能力看到Lidar的三维信息,就好比是一双超级眼睛。在这双超级眼睛上面,开发自己的感知算法,最后会输出一个结果层的物体。
前融合的就是尝试把摄像头上的像素,激光雷达的点云,毫米波雷达拟合过的一些特征信息(现在如果用4D毫米就是4D毫米波的点云,它已经能够成像了),把这些信息去做原始数据的时空同步,然后再结合其他的信息,最后得到了一个多维度的Raw Data,再用感知算法去做分类识别跟踪等等。
但是这个过程中像素级的前融合非常难做,原因在于:
- 点云数据与像素去做匹配的时候,时空同步难度很大;
- 对数据处理的实时性要求高,导致算力消耗巨大;
- 不同的传感器硬件系统时间是不一样的,很难知道激光雷达的某一帧到底实际严格意义上对应了摄像头或者毫米波雷达的哪一帧,而且存在运动补偿的误差。
- 场景的适用性差,也就是即使做了非常准确的标定,一旦换硬件或者换车型很多流程又要重新来一遍。
- 中融合算法,也就是特征级融合
中融合这个提法,一般使用的场合并不多。多数时候称之为特征级融合。
所谓中融合也就是属于中间层次级融合,先从每个传感器提供的原始观测数据中提取代表性的特征,再把这些特征融合成单一的特征向量;其中选择合适的特征进行融合是关键;特征信息包括边缘、方向、速度、形状等。
特征层融合可划分为两大类:目标状态融合与目标特性融合。
目标状态融合:主要应用于多传感器的目标跟踪领域;融合系统首先对传感器数据进行预处理以完成数据配准,在数据配准之后,融合处理主要实现参数关联和状态估计。
目标特性融合:就是特征层联合识别,实质就是模式识别问题;在融合前必须先对特征进行关联处理,再对特征矢量分类成有意义的组合。
在融合的三个层次中,特征层融合技术发展较为完善,由于在特征层已建立了一整套的行之有效的特征关联技术,可以保证融合信息的一致性;此级别融合对计算量和通信带宽要求相对降低,但由于部分数据的舍弃使其准确性也有所下降。
目前逐渐称为主流模型的BEV就属于典型的特征级融合,首先在BEV算法里面是用特征级的融合,然后再把它映射到统一的坐标下,即BEV的坐标体系里面。
然后去做融合,融合之后再进行训练学习分类,最终后融合的特征可以保留,那么同时它又不像是前融合阶段要求高精度和高算力,所以它是一个相对折中的一种方法。
- 后融合算法,也就是目标级融合
1、每个传感器各自独立处理生成的目标数据。
2、每个传感器都有自己独立的感知,比如激光雷达有激光雷达的感知,摄像头有摄像头的感知,毫米波雷达也会做出自己的感知。
3、当所有传感器完成目标数据生成后,再由主处理器进行数据融合。
4.多传感器融合的误差建模与补偿技术
典型的有对温度敏感的IMU传感器温度误差建模及温补、点云畸变补偿、相机图像的校正。
5.多传感器融合技术的特点
那么,多传感器融合技术有哪些优点呢?为什么自动驾驶要选择多传感器融合技术呢?
多传感器数据融合比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。