目录
一、Redis键值设计
1.1、优雅的key结构
1.2、拒绝BigKey
1.2.1、BigKey的危害
1.2.2、如何发现BigKey
1.2.3、如何删除BigKey
1.3、恰当的数据类型
例1:比如存储一个User对象,我们有三种存储方式:
例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?
二、批处理优化
2.1、Pipeline
2.1.1、我们的客户端与redis服务器是这样交互的
2.1.2、MSet
2.1.3、Pipeline
2.2、集群下的批处理
2.2.1、串行化执行代码实践
2.2.2、Spring集群环境下批处理代码
3、服务器端优化-持久化配置
4、服务器端优化-慢查询优化
4.1 什么是慢查询
4.2 如何查看慢查询
5、服务器端优化-命令及安全配置
6、服务器端优化-Redis内存划分和内存配置
7、服务器端集群优化-集群还是主从
一、Redis键值设计
1.1、优雅的key结构
Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:
-
遵循基本格式:[业务名称]:[数据名]:[id]
-
长度不超过44字节
-
不包含特殊字符
例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:
这样设计的好处:
-
可读性强
-
避免key冲突
-
方便管理
-
更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为raw模式存储,在raw模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储SDS内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片
1.2、拒绝BigKey
BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:
-
Key本身的数据量过大:一个String类型的Key,它的值为5 MB
-
Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
-
Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB
那么如何判断元素的大小呢?redis也给我们提供了命令
推荐值:
-
单个key的value小于10KB
-
对于集合类型的key,建议元素数量小于1000
1.2.1、BigKey的危害
-
网络阻塞
-
对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
-
-
数据倾斜
-
BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
-
-
Redis阻塞
-
对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
-
-
CPU压力
-
对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用
-
1.2.2、如何发现BigKey
① redis-cli --bigkeys
利用redis-cli提供的--bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key
命令:redis-cli -a 密码 --bigkeys
② scan扫描
自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组。
import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.ScanResult;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class JedisTest {
private Jedis jedis;
@BeforeEach
void setUp() {
// 1.建立连接
// jedis = new Jedis("192.168.150.101", 6379);
jedis = JedisConnectionFactory.getJedis();
// 2.设置密码
jedis.auth("123321");
// 3.选择库
jedis.select(0);
}
final static int STR_MAX_LEN = 10 * 1024;
final static int HASH_MAX_LEN = 500;
@Test
void testScan() {
int maxLen = 0;
long len = 0;
String cursor = "0";
do {
// 扫描并获取一部分key
ScanResult<String> result = jedis.scan(cursor);
// 记录cursor
cursor = result.getCursor();
List<String> list = result.getResult();
if (list == null || list.isEmpty()) {
break;
}
// 遍历
for (String key : list) {
// 判断key的类型
String type = jedis.type(key);
switch (type) {
case "string":
len = jedis.strlen(key);
maxLen = STR_MAX_LEN;
break;
case "hash":
len = jedis.hlen(key);
maxLen = HASH_MAX_LEN;
break;
case "list":
len = jedis.llen(key);
maxLen = HASH_MAX_LEN;
break;
case "set":
len = jedis.scard(key);
maxLen = HASH_MAX_LEN;
break;
case "zset":
len = jedis.zcard(key);
maxLen = HASH_MAX_LEN;
break;
default:
break;
}
if (len >= maxLen) {
System.out.printf("Found big key : %s, type: %s, length or size: %d %n", key, type, len);
}
}
} while (!cursor.equals("0"));
}
@AfterEach
void tearDown() {
if (jedis != null) {
jedis.close();
}
}
}
③ 第三方工具
-
利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
-
GitHub - sripathikrishnan/redis-rdb-tools: Parse Redis dump.rdb files, Analyze Memory, and Export Data to JSON
④ 网络监控
-
自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
-
一般阿里云搭建的云服务器就有相关监控页面
1.2.3、如何删除BigKey
BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。
-
redis 3.0 及以下版本
-
如果是集合类型,则遍历BigKey的元素,先逐个删除元素,最后删除BigKey(因为是你的key大,并不是值大,所以先删除集合里的元素,最后删除key)
-
Redis 4.0以后
-
Redis在4.0后提供了异步删除的命令:unlink
1.3、恰当的数据类型
例1:比如存储一个User对象,我们有三种存储方式:
① 方式一:json字符串
| user:1 | {"name": "Jack", "age": 21} || :----: | :-------------------------: |
优点:实现简单粗暴
缺点:数据耦合,不够灵活
② 方式二:字段打散
优点:可以灵活访问对象任意字段
缺点:占用空间大、没办法做统一控制
③ 方式三:hash(推荐)
<table>
<tr>
<td rowspan="2">user:1</td>
<td>name</td>
<td>jack</td>
</tr>
<tr>
<td>age</td>
<td>21</td>
</tr>
</table>
优点:底层使用ziplist,空间占用小,可以灵活访问对象的任意字段
缺点:代码相对复杂
例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?
<table>
<tr style="color:red">
<td>key</td>
<td>field</td>
<td>value</td>
</tr>
<tr>
<td rowspan="3">someKey</td>
<td>id:0</td>
<td>value0</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>id:999999</td>
<td>value999999</td>
</tr>
</table>
存在的问题:
(1)hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多
(2)可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题
方案一
拆分为string类型
<table>
<tr style="color:red">
<td>key</td>
<td>value</td>
</tr>
<tr>
<td>id:0</td>
<td>value0</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>id:999999</td>
<td>value999999</td>
</tr>
</table>
存在的问题:
-
string结构底层没有太多内存优化,内存占用较多
-
想要批量获取这些数据比较麻烦
方案二
拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash
<table>
<tr style="color:red">
<td>key</td>
<td>field</td>
<td>value</td>
</tr>
<tr>
<td rowspan="3">key:0</td>
<td>id:00</td>
<td>value0</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>id:99</td>
<td>value99</td>
</tr>
<tr>
<td rowspan="3">key:1</td>
<td>id:00</td>
<td>value100</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>id:99</td>
<td>value199</td>
</tr>
<tr>
<td colspan="3">....</td>
</tr>
<tr>
<td rowspan="3">key:9999</td>
<td>id:00</td>
<td>value999900</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>id:99</td>
<td>value999999</td>
</tr>
</table>
package com.heima.test;
import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class JedisTest {
private Jedis jedis;
@BeforeEach
void setUp() {
// 1.建立连接
// jedis = new Jedis("192.168.150.101", 6379);
jedis = JedisConnectionFactory.getJedis();
// 2.设置密码
jedis.auth("123321");
// 3.选择库
jedis.select(0);
}
@Test
void testSetBigKey() {
Map<String, String> map = new HashMap<>();
for (int i = 1; i <= 650; i++) {
map.put("hello_" + i, "world!");
}
jedis.hmset("m2", map);
}
@Test
void testBigHash() {
Map<String, String> map = new HashMap<>();
for (int i = 1; i <= 100000; i++) {
map.put("key_" + i, "value_" + i);
}
jedis.hmset("test:big:hash", map);
}
@Test
void testBigString() {
for (int i = 1; i <= 100000; i++) {
jedis.set("test:str:key_" + i, "value_" + i);
}
}
@Test
void testSmallHash() {
int hashSize = 100;
Map<String, String> map = new HashMap<>(hashSize);
for (int i = 1; i <= 100000; i++) {
int k = (i - 1) / hashSize;
int v = i % hashSize;
map.put("key_" + v, "value_" + v);
if (v == 0) {
jedis.hmset("test:small:hash_" + k, map);
}
}
}
@AfterEach
void tearDown() {
if (jedis != null) {
jedis.close();
}
}
}
二、批处理优化
2.1、Pipeline
2.1.1、我们的客户端与redis服务器是这样交互的
单个命令的执行流程
N条命令的执行流程
redis处理指令是很快的,主要花费的时候在于网络传输。于是乎很容易想到将多条指令批量的传输给redis
2.1.2、MSet
Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:
-
mset
-
hmset
利用mset批量插入10万条数据
@Test
void testMxx() {
String[] arr = new String[2000];
int j;
long b = System.currentTimeMillis();
for (int i = 1; i <= 100000; i++) {
j = (i % 1000) << 1;
arr[j] = "test:key_" + i;
arr[j + 1] = "value_" + i;
if (j == 0) {
jedis.mset(arr);
}
}
long e = System.currentTimeMillis();
System.out.println("time: " + (e - b));
}
2.1.3、Pipeline
MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline。
@Test
void testPipeline() {
// 创建管道
Pipeline pipeline = jedis.pipelined();
long b = System.currentTimeMillis();
for (int i = 1; i <= 100000; i++) {
// 放入命令到管道
pipeline.set("test:key_" + i, "value_" + i);
if (i % 1000 == 0) {
// 每放入1000条命令,批量执行
pipeline.sync();
}
}
long e = System.currentTimeMillis();
System.out.println("time: " + (e - b));
}
mset和Pipeline到底选谁呢?
mset限制数据类型,但Pipeline不限制,可以任意命令做组合。
mset之所以要比Pipeline快,就是因为mset是原子性操作,一次全执行完,中间不会有其它命令来插队,而Pipeline不是,Pipeline在执行时,是一组命令发到redis里,但是却不是一起执行的,比如你发送一组命令1000条,但这个时候也有其它的客户端发送命令,可能就插队了,总共运行时长就多了一些。
2.2、集群下的批处理
如MSET或Pipeline这样的批处理需要在一次请求中携带多条命令,而此时如果Redis是一个集群,那批处理命令的多个key必须落在一个插槽中,否则就会导致执行失败。大家可以想一想这样的要求其实很难实现,因为我们在批处理时,可能一次要插入很多条数据,这些数据很有可能不会都落在相同的节点上,这就会导致报错了。
这个时候,我们可以找到4种解决方案:
第一种方案:串行执行,所以这种方式没有什么意义,当然,执行起来就很简单了,缺点就是耗时过久。
第二种方案:串行slot,简单来说,就是执行前,客户端先计算一下对应的key的slot,一样slot的key就放到一个组里边,不同的,就放到不同的组里边,然后对每个组执行pipeline的批处理,他就能串行执行各个组的命令,这种做法比第一种方法耗时要少,但是缺点呢,相对来说复杂一点,所以这种方案还需要优化一下
第三种方案:并行slot,相较于第二种方案,在分组完成后串行执行,第三种方案,就变成了并行执行各个命令,所以他的耗时就非常短,但是实现呢,也更加复杂。
第四种方案:hash_tag,redis计算key的slot的时候,其实是根据key的有效部分来计算的,通过这种方式就能一次处理所有的key,这种方式耗时最短,实现也简单,但是如果通过操作key的有效部分,那么就会导致所有的key都落在一个节点上,产生数据倾斜的问题,所以我们推荐使用第三种方式。
2.2.1、串行化执行代码实践
public class JedisClusterTest {
private JedisCluster jedisCluster;
@BeforeEach
void setUp() {
// 配置连接池
JedisPoolConfig poolConfig = new JedisPoolConfig();
poolConfig.setMaxTotal(8);
poolConfig.setMaxIdle(8);
poolConfig.setMinIdle(0);
poolConfig.setMaxWaitMillis(1000);
HashSet<HostAndPort> nodes = new HashSet<>();
nodes.add(new HostAndPort("192.168.150.101", 7001));
nodes.add(new HostAndPort("192.168.150.101", 7002));
nodes.add(new HostAndPort("192.168.150.101", 7003));
nodes.add(new HostAndPort("192.168.150.101", 8001));
nodes.add(new HostAndPort("192.168.150.101", 8002));
nodes.add(new HostAndPort("192.168.150.101", 8003));
jedisCluster = new JedisCluster(nodes, poolConfig);
}
@Test
void testMSet() {
jedisCluster.mset("name", "Jack", "age", "21", "sex", "male");
}
@Test
void testMSet2() {
Map<String, String> map = new HashMap<>(3);
map.put("name", "Jack");
map.put("age", "21");
map.put("sex", "Male");
//对Map数据进行分组。根据相同的slot放在一个分组
//key就是slot,value就是一个组
Map<Integer, List<Map.Entry<String, String>>> result = map.entrySet()
.stream()
.collect(Collectors.groupingBy(
entry -> ClusterSlotHashUtil.calculateSlot(entry.getKey()))
);
//串行的去执行mset的逻辑
for (List<Map.Entry<String, String>> list : result.values()) {
String[] arr = new String[list.size() * 2];
int j = 0;
for (int i = 0; i < list.size(); i++) {
j = i<<2;
Map.Entry<String, String> e = list.get(0);
arr[j] = e.getKey();
arr[j + 1] = e.getValue();
}
jedisCluster.mset(arr);
}
}
@AfterEach
void tearDown() {
if (jedisCluster != null) {
jedisCluster.close();
}
}
}
2.2.2、Spring集群环境下批处理代码
@Test
void testMSetInCluster() {
Map<String, String> map = new HashMap<>(3);
map.put("name", "Rose");
map.put("age", "21");
map.put("sex", "Female");
stringRedisTemplate.opsForValue().multiSet(map);
List<String> strings = stringRedisTemplate.opsForValue().multiGet(Arrays.asList("name", "age", "sex"));
strings.forEach(System.out::println);
}
原理分析
在RedisAdvancedClusterAsyncCommandsImpl 类中。
首先根据slotHash算出来一个partitioned的map,map中的key就是slot,而他的value就是对应的对应相同slot的key对应的数据。
通过 RedisFuture<String> mset = super.mset(op);进行异步的消息发送。
@Override
public RedisFuture<String> mset(Map<K, V> map) {
Map<Integer, List<K>> partitioned = SlotHash.partition(codec, map.keySet());
if (partitioned.size() < 2) {
return super.mset(map);
}
Map<Integer, RedisFuture<String>> executions = new HashMap<>();
for (Map.Entry<Integer, List<K>> entry : partitioned.entrySet()) {
Map<K, V> op = new HashMap<>();
entry.getValue().forEach(k -> op.put(k, map.get(k)));
RedisFuture<String> mset = super.mset(op);
executions.put(entry.getKey(), mset);
}
return MultiNodeExecution.firstOfAsync(executions);
}
3、服务器端优化-持久化配置
Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:
-
用来做缓存的Redis实例尽量不要开启持久化功能(缓存数据的目的是为了提高查询效率,即便缓存临时消失了,我们再查一下mysql不就回来了吗,所以缓存的大部分数据对持久化要求没有那么高)
-
建议关闭RDB持久化功能,使用AOF持久化(虽然RDB有很多优点,但由于RDB备份频率并不高,容易丢失很多数据,如果把备份间隔时间缩短,当大数据量的情况下,备份时间还是很久的,而且有大量的磁盘IO,执行起来对性能影响非常大)
-
利用脚本定期在slave节点做RDB,实现数据备份(AOF更适合持久化,RDB适合备份)
-
设置合理的rewrite阈值,避免频繁的bgrewrite
-
配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞
-
部署有关建议:
-
Redis实例的物理机要预留足够内存,应对fork和rewrite
-
单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力
-
不要与CPU密集型应用部署在一起
-
不要与高硬盘负载应用一起部署。例如:数据库、消息队列
-
4、服务器端优化-慢查询优化
4.1 什么是慢查询
并不是很慢的查询才是慢查询,而是:在Redis执行时耗时超过某个阈值的命令,称为慢查询。
慢查询的危害:由于Redis是单线程的,所以当客户端发出指令后,他们都会进入到redis底层的queue来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。
慢查询的阈值可以通过配置指定:
slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000
慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:
slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000
修改这两个配置可以使用:config set命令:
4.2 如何查看慢查询
知道了以上内容之后,那么咱们如何去查看慢查询日志列表呢:
-
slowlog len:查询慢查询日志长度
-
slowlog get [n]:读取n条慢查询日志
-
slowlog reset:清空慢查询列表
5、服务器端优化-命令及安全配置
安全可以说是服务器端一个非常重要的话题,如果安全出现了问题,那么一旦这个漏洞被一些坏人知道了之后,并且进行攻击,那么这就会给咱们的系统带来很多的损失,所以我们这节课就来解决这个问题。
Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞.漏洞重现方式:Redis未授权访问配合SSH key文件利用分析-腾讯云开发者社区-腾讯云
为什么会出现不需要密码也能够登录呢,主要是Redis考虑到每次登录都比较麻烦,所以Redis就有一种ssh免秘钥登录的方式,生成一对公钥和私钥,私钥放在本地,公钥放在redis端,当我们登录时服务器,再登录时候,他会去解析公钥和私钥,如果没有问题,则不需要利用redis的登录也能访问,这种做法本身也很常见,但是这里有一个前提,前提就是公钥必须保存在服务器上,才行,但是Redis的漏洞在于在不登录的情况下,也能把秘钥送到Linux服务器,从而产生漏洞
漏洞出现的核心的原因有以下几点:
-
Redis未设置密码
-
利用了Redis的config set命令动态修改Redis配置
-
使用了Root账号权限启动Redis
所以:如何解决呢?我们可以采用如下几种方案
为了避免这样的漏洞,这里给出一些建议:
-
Redis一定要设置密码
-
禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
-
bind:限制网卡,禁止外网网卡访问
-
开启防火墙
-
不要使用Root账户启动Redis
-
尽量不是有默认的端口
6、服务器端优化-Redis内存划分和内存配置
当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。
有关碎片问题分析
Redis底层分配并不是这个key有多大,他就会分配多大,而是有他自己的分配策略,比如8,16,20等等,假定当前key只需要10个字节,此时分配8肯定不够,那么他就会分配16个字节,多出来的6个字节就不能被使用,这就是我们常说的 碎片问题
进程内存问题分析:
这片内存,通常我们都可以忽略不计
缓冲区内存问题分析:
一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。
内存占用 | 说明 |
---|---|
数据内存 | 是Redis最主要的部分,存储Redis的键值信息。主要问题是BigKey问题、内存碎片问题 |
进程内存 | Redis主进程本身运⾏肯定需要占⽤内存,如代码、常量池等等;这部分内存⼤约⼏兆,在⼤多数⽣产环境中与Redis数据占⽤的内存相⽐可以忽略。 |
缓冲区内存 | 一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,不当使用BigKey,可能导致内存溢出。 |
于是我们就需要通过一些命令,可以查看到Redis目前的内存分配状态:
-
info memory:查看内存分配的情况
- memory xxx:查看key的主要占用情况
接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?
内存缓冲区常见的有三种:
-
复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb
-
AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限
-
客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置
以上复制缓冲区和AOF缓冲区 不会有问题,最关键就是客户端缓冲区的问题。
客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向redis输入数据的输入端缓冲区和redis向客户端返回数据的响应缓存区,输入缓冲区最大1G且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis会直接断开,因为本来此时此刻就代表着redis处理不过来了,我们需要担心的就是输出端缓冲区。
我们在使用redis过程中,处理大量的big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致redis直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的redis断开,所以解决方案有两个:
1、设置一个大小
2、增加我们带宽的大小,避免我们出现大量数据从而直接超过了redis的承受能力
7、服务器端集群优化-集群还是主从
集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:
-
集群完整性问题
-
集群带宽问题
-
数据倾斜问题
-
客户端性能问题
-
命令的集群兼容性问题
-
lua和事务问题
问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:
大家可以设想一下,如果有几个slot不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成no,即有slot不能使用时,我们的redis集群还是可以对外提供服务。