机器学习算法分类(三)

news2024/11/24 7:38:01

在机器学习中,又分为监督学习、无监督学习、半监督学习、强化学习和深度学习。

监督、无监督、半监督学习

机器学习根据数据集是否有标签,又分为监督学习、无监督学习、半监督学习。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7daO0Gcs-1686306684846)(image/image-20230603104813945.png)]

  1. 监督学习:训练数据集全部都有标签
  2. 无监督学习:训练数据集全部没有标签
  3. 半监督学习:训练数据集有的有标签,有的没有标签。

监督学习数据集全部都有标签,根据标签的特点,监督学习又分为回归问题和分类问题。

  1. 回归问题:标签是连续的数值。是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析,说白了就是当自变量变化的时候,研究一下因变量是怎么跟着变化的。比如说电商场景中的销量预测、客户生命周期价值预测等。
  2. 分类问题:标签是离散型数值。就是将数据分为不同的类别(标签)。通常用于图像识别、文本分类等分类问题。

在这里插入图片描述

无监督学习应用于没有标签的数据集。它通过数据出发,自动寻找规律,通常应用在聚类、降维等有限场景中。

无监督学习聚类方法是一种将数据集中的对象分组的方法,分成多个不同的组。其目的是使组内对象相似度尽可能高,组间对象相似度尽可能低。

半监督学习是介于监督学习和无监督学习之间的一种学习方法,这种机器学习类型的应用通常是因为获取数据标签难度很高。它利用少量的带标签数据和大量的未标记数据来训练模型,以达到提高模型预测性能的目的。在半监督学习中,带标签数据通常是由领域专家手动标注的,而未标记数据则是从大量的无标签数据中获取的。

哪种监督学习更为常用?

监督学习是应用最广泛的机器学习算法,无监督学习在聚类场景中使用更多,例如 为用户做分组画像。半监督学习应用场景比较少,目前我还没遇见过,感兴趣的自行了解。

强化学习

强化学习与人类的学习方式最为相似。强化学习是一种通过试错的方式,从环境中学习最优决策策略的机器学习方法。智能体(agent)通过与环境交互,获得奖励信号来学习如何做出最好的决策。它通过反复的试错、不断的收集反馈,不断的学习,不断地训练使得它会变得越来越强。

强化学习和监督学习的差异在于:监督学习是从数据中学习,而强化学习是从环境给它的奖惩中学习。

强化学习在机器人、汽车自动驾驶领域应用广泛。
在这里插入图片描述
举个小例子:人训练🐶,当人给🐶一个手势时,如果🐶正确执行了我们的指令,那我们就给它骨头奖励;如果🐶不执行我们的指令,那我们就给它一些惩罚,通过一定时间的反复训练,🐶就学会了执行人类的指令。这是一样的道理。
在这里插入图片描述

深度学习

科学家生物神经元的启发,照葫芦画瓢创建除了人工神经网络,然后发现这玩意还挺好用。神经网络的发展由最开始的单层神经网络发展到深层神经网络,而深层神经网络中,卷积神经网络可以说是大杀四方,它在语音识别、自然语言处理和计算机视觉领域被广泛应用。

深度学习是一种基于神经网络算法的机器学习技术,它通过多层神经网络来学习高级抽象特征并进行模式识别和预测。

深度学习擅长对非结构的数据集进行自动的复杂特征提取。它并不是一种独立于其他类型机器学习算法,它可以应用在监督学习、半监督学习和无监督学习和强化学习中。

神经网络是一种计算模型,它受到生物神经元的启发,通过多个神经元的组合和连接,实现对输入数据的处理和预测。

神经网络由多个神经元组成,每个神经元接收一组输入,并产生一个输出。神经网络通常由多个层次组成,包括输入层、隐藏层和输出层。

  1. 输入层是神经网络的第一层,它接收输入数据,并将其传递到下一层。
  2. 隐藏层是神经网络的中间层,通过对输入数据进行加权和激活函数的处理,实现了对复杂特征的提取。
  3. 输出层是神经网络的最后一层,输出层将经过处理的数据转化为输出结果,并与实际结果进行比较,以计算损失函数并更新模型参数。
    在这里插入图片描述
    神经网络的工作原理可以分为前向传播和反向传播两个过程。

1、 前向传播:输入信号从输入层开始,经过一系列的加权求和和激活函数处理后,传递给下一层神经元,下一层神经元的输入是上一次神经元的输出,这个过程一直持续到输出层,得到最终的计算结果。
2、 反向传播:根据输出层的计算结果和实际目标值计算误差,然后按原路径反向传播误差,它通过将损失函数反向传播到神经网络中的每个神经元,以更新神经元的权重和偏置,以最小化误差。这个过程可以通过梯度下降等优化算法实现。

通过不断地前向传播和反向传播,神经网络学会了从输入数据中提取有用的特征,使得我们的模型精度逐渐提升,以完成分类、预测等任务。

神经网络在图像识别、自然语言处理、推荐系统等领域中取得了显著的成果。在图像识别领域,(CNN)卷积神经网络通过对图像进行卷积和池化等操作,实现对图像的特征提取和分类。在自然语言处理领域,(RNN)循环神经网络通过对文本序列进行处理,实现对文本的理解和生成。在推荐系统领域,(DNN)深度神经网络通过对用户和物品的数据进行处理和分析,实现对用户的个性化推荐和优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/628230.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

grep命令的使用

grep命令是Linux中常用的文本搜索工具,它可以根据用户指定的模式,在文件或标准输入中查找匹配的文本行并返回。 下面是grep命令的一些常见选项: -i:忽略大小写-n:显示匹配行的行号-v:显示不匹配的行-r&am…

【新版】系统架构设计师 - 计算机系统基础知识

个人总结,仅供参考,欢迎加好友一起讨论 文章目录 架构 - 计算机系统基础知识考点摘要计算机系统计算机硬件组成浮点数Flynn分类法CISC与RISC流水线技术超标量流水线存储系统层次化存储结构CacheCache的命中率Cache的页面淘汰主存编址磁盘管理&#xff08…

《MySQL(四):基础篇- 约束》

文章目录 4. 约束4.1 概述4.2 约束演示4.3 外键约束4.3.1 介绍4.3.2 语法4.3.3 删除/更新行为 4. 约束 4.1 概述 概念:约束是作用于表中字段上的规则,用于限制存储在表中的数据。 目的:保证数据库中数据的正确、有效性和完整性。 分类: 约…

YOLOv5白皮书-第Y6周:模型改进

目录 一、改进网络结构设计1 改进的注意力机制2 多尺度特征融合3 改进的激活函数 二 数据增强和数据平衡1 数据增强2 数据平衡3 注意事项 三、模型融合策略1 投票策略2 加权平均策略3 特征融合策略4 其他模型融合策略 🍨 本文为🔗365天深度学习训练营 中…

protobuf实现原理

文章目录 一、前言二、概述三、数据存储方式:Varints(一)原理(二)举例(三)缺点 四、协议的数据结构(一)原理(二)举例 一、前言 最近刚刚从一家公司离职,在职的时候使用到了go语言的grpc库,了解了除了json之外的另一个专门用于远程调用的序列…

二本计算机专业学长经验之谈

2023.6.9 今年的行情对我们这些双非大学、二本真的太难了,菜鸟今年感觉毕业找的工作真的又苦逼钱又少,准备跳槽的,结果满大街投简历,连个毛都没有,唯一一个给了个海笔,然后就没然后… 所以希望大家真的要好…

Element的Select分组全选模式

Select 选择器选择器的分组,如上图所示,我们希望做到的效果是,点击“热门城市”或“城市名”的时候全选分组的options。 思路 思路一:目前的Select 选择器分组OptionGroup的Title只是一个文本DOM,没用其他东西&#…

详解基于罗德里格斯(Rodrigues)公式由旋转向量到旋转矩阵的 Python 实现

文章目录 旋转向量 rotation vector旋转矩阵 rotation matrix罗德里格斯公式 Rodrigues formula基于 Python 和 NumPy 实现 Rodrigues 公式 旋转向量 rotation vector 任何一个旋转都可以通过一个 旋转轴 加一个 旋转角 进行描述, 即围绕 旋转轴 旋转一个 旋转角. 此时可以通过…

javascript 中的 URL 解码

文章目录 需要URL编解码JavaScript 中的 URL 解码使用 unescaped() 方法解码编码的 URL使用 decodeURI() 方法解码编码的 URL使用 decodeURIComponent() 方法解码编码的 URL 总结 本文着眼于 URL 解码以及如何使用 JavaScript 对编码的 URL 进行解码。 需要URL编解码 URL 应具…

政企HTTPS加密国产化替代的四要素

信创产业是数字经济、信息安全发展的基础,也是“新基建”的重要内容,将成为拉动中国经济增长的重要抓手之一。随着国资委79号文的发布,国央企落实信息化系统的信创国产化改造的步伐加快,贯彻“28N”战略,从党政机关扩展…

Doris学习笔记

1.数据模型 数据模型 - Apache Doris 1.1 Aggregate 模型(聚合) 可以发现,user_id、date、age ...等没有设置 AggregationType, 那么这几个字段就成了一个key了。设置了 AggregationType 字段,说明该列的属性已经成value了。 我们导入一张…

Linux·Binder机制原理

目录 前言 目录 1. Binder到底是什么? 2. 知识储备 2.1 进程空间划分 2.2 进程隔离 & 跨进程通信( IPC ) 2.5 内存映射 3. Binder 跨进程通信机制 模型 3.1 模型原理图 3.3 模型原理步骤说明 3.4 额外说明 4. Binder机制 在An…

自学黑客(网络安全),一般人我劝你还是算了

写在开篇 笔者本人 17 年就读于一所普通的本科学校,20 年 6 月在三年经验的时候顺利通过校招实习面试进入大厂,现就职于某大厂安全联合实验室。 我为啥说自学黑客,一般人我还是劝你算了吧!因为我就是那个不一般的人。 ​ 首先我…

elementui tree 支持虚拟滚动和treeLine (下)

​ 由于我之前没有发布过npm 包,这里还得现学一下。 参考资料: 链接: 如何写一个vue组件发布到npm,包教包会,保姆级教学链接: vue组件发布npm最佳实践 按照上面的步骤,我通过 vue-sfc-rollup 生成了项目,…

六级备考8天|CET-6|阅读强化|16:00~17:20

调整做题顺序:仔细阅读——>长篇阅读(信息匹配)——>翻译——>选词填空 顺关系 or 反关系 正态度 or 负态度 阅读要有针对性 理解要有空白性 2)高大上的思维来自于中文的语言特点 练习 第一段:例子,无观点&am…

微伴助手如何增加客户积分?如何自动给客户添加企业标签?

微伴助手是一款企业微信第三方应用,已经为电商、教育、金融、保险、医疗等机构提供技术支持,适用于引流获客、客户意向跟进、销售转化、社群运营等全方位营销场景,旨在帮助企业构建高转化率的私域流量池。 微伴助手基于企业微信开放的接口&a…

adb shell 调试 Android 串口 百度AI也很

在 Android 平台上进行串口调试需要使用 Android Debug Bridge (ADB) 工具。ADB 是一个命令行工具,可以通过 USB 连接 Android 设备,并执行各种命令来调试应用程序。 以下是使用 ADB shell 进行 Android 串口调试的步骤: 连接 Android 设备…

【2023最全教程】什么是自动化测试框架?熬夜7天整理出这一份3000字超全学习指南

所有软件在提供给用户之前都必须经过测试。软件测试是开发生命周期中必不可少的一步因为它确保用户必须收到符合其开发目的的高质量产品。每个企业都优先考虑测试;因此,大多数人更愿意从手动测试转向自动化。因此,自动化测试框架是任何软件测试过程的基础…

安全测试网站-DWVA下载安装启动

参考:DVWA下载、安装、使用(漏洞测试环境搭建)教程 - 付杰博客 (fujieace.com) DVWA全称为Damn Vulnerable Web Application,意为存在糟糕漏洞的web应用。它是一个基于PHP/MySQL开发的存在糟糕漏洞的web应用,旨在为专…

华为OD机试真题B卷 Java 实现【自守数】,附详细解题思路

一、题目描述 自守数是指一个数的平方的尾数等于该数自身的自然数。例如:25^2 625,76^2 5776,9376^2 87909376。请求出n(包括n)以内的自守数的个数。 数据范围: 1≤n≤10000 二、输入描述 int型整数。 三、输出描述 n以内…