有了IP地址,还需要MAC地址嘛?二选一可否?

news2024/11/26 23:30:08


概要 

在计算机网络中,IP地址和MAC地址是两个最基本的概念。IP地址在互联网中是用于标识主机的逻辑地址,而MAC地址则是用于标识网卡的物理地址。虽然它们都是用于标识一个设备的地址,但是它们的作用和使用场景是不同的。

IP地址是在网络层OSI模型中的第三层)使用的,它是一个动态分配且具有结构化特性的地址,可以实现跨网络的通信和路由。

MAC地址是在数据链路层OSI模型中的第二层)使用的,它是一个固定且扁平化的地址,可以实现局域网内部的寻址和数据传输。

因此,在网络通信中,使用IP地址和MAC地址这两种不同类型的地址是非常必要的。


IP地址和MAC地址的定义和格式

IP地址

IPInternet Protocol)是互联网协议的简称,它是一种规定了网络设备如何在互联网上进行通信的协议。IP协议定义了一种逻辑地址,即IP地址,用于在互联网上唯一标识一个网络设备。

 

IP协议目前有两个版本,分别是IPv4IPv6

 

IPv4Internet Protocol version 4)是目前最广泛使用的IP协议版本,它使用32二进制数来表示一个IP地址,通常以点分十进制形式来显示,例如192.168.1.1

一个IPv4地址由两部分组成:网络号主机号

网络号表示该设备所属的网络,

主机号表示该设备在该网络中的编号。

不同长度的网络号可以划分出不同等级的网络,例如A类、B类、C类等。为了方便表示不同长度的网络号,IPv4引入了子网掩码(subnet mask)的概念,它是一个32位二进制数,其中与网络号对应的位为1,与主机号对应的位为0。例如255.255.255.0就是一个子网掩码,表示前24位为网络号,后8位为主机号。

IPv6Internet Protocol version 6)是为了解决IPv4地址耗尽问题而设计的新一代IP协议版本,它使用128二进制数来表示一个IP地址,通常以冒分十六进制形式来显示,例如2001:db8::1

一个IPv6地址由两部分组成:前缀接口标识符

前缀表示该设备所属的网络或子网,

接口标识符表示该设备在该网络或子网中的编号。

IPv6没有固定长度的网络号或主机号,而是使用前缀长度(prefix length)来表示前缀占用多少位。例如2001:db8::1/64就表示前64位为前缀,后64位为接口标识符。

MAC地址

MACMedia Access Control)是媒体访问控制的简称,它是一种规定了数据链路层如何访问物理媒介(如电缆、光纤等)进行数据传输的协议。MAC协议定义了一种物理地址,即MAC地址,用于在局域网内部唯一标识一个网卡或其他网络设备。MAC协议有多种类型,其中最常见的一种是以太网(Ethernet)协议。

以太网协议使用48二进制数来表示一个MAC地址,通常以冒分十六进制形式来显示,例如00-16-EA-AE-3C-40。一个以太网MAC地址由两部分组成:OUINICI

OUIOrganizationally Unique Identifier)是组织唯一标识符,占用前24位,表示该网卡或其他网络设备的制造商编号。

NICINetwork Interface Card Identifier)是网卡标识符,占用后24位,表示该制造商分配给该网卡或其他网络设备的序列号。

 

因此,一个以太网MAC地址可以唯一地标识一个网卡或其他网络设备,并且不能被更改。

IP地址和MAC地址的工作原理和过程

IP地址

IP协议工作在网络层OSI模型中的第三层),它负责将数据封装成数据包(packet),并根据目标IP地址进行路由选择和转发。当一个主机要发送数据给另一个主机时,它需要知道目标主机的IP地址,并将其写入数据包头部。然后根据路由表(routing table),选择合适的下一跳(next hop),也就是下一个转发该数据包的路由器或其他网络设备,并将数据包发送出去。

当数据包到达下一跳时,下一跳会根据自己的路由表再次选择合适的下一跳,并将数据包转发出去。这个过程会重复多次,直到数据包到达目标主机所在的局域网为止。在这个过程中,每个路由器或其他网络设备只需要知道下一跳的IP地址,并不需要知道目标主机或其他中间节点的具体位置或物理连接方式。

MAC地址

MAC协议工作在数据链路层OSI模型中的第二层),它负责将数据封装成帧(frame),并根据目标MAC地址进行寻址和传输。当一个主机要发送数据给另一个主机时,它需要知道目标主机的MAC地址,并将其写入帧头部。然后根据物理媒介(如电缆、光纤等)的特性,将帧发送出去。

当帧到达目标主机所在的局域网时,局域网内的所有设备都会接收到该帧,并根据帧头部的目标MAC地址判断是否是自己。如果是自己,则接收该帧,并将其解封装成数据包,交给网络层处理。如果不是自己,则丢弃该帧。在这个过程中,每个设备只需要知道与自己直连的设备的MAC地址,并不需要知道目标主机或其他中间节点的逻辑位置或网络连接方式。

那么,一个主机如何获取另一个主机的MAC地址呢?

这就需要用到ARPAddress Resolution Protocol)协议,它是一种用于根据IP地址获取MAC地址的协议。ARP协议的工作原理和过程如下:

当一个主机要发送数据给另一个主机时,首先会检查自己的ARP缓存表(ARP cache),看是否已经有目标主机的IP地址和MAC地址的对应关系。如果有,则直接使用该MAC地址封装帧并发送出去。

如果没有,则需要发起ARP请求(ARP request),向局域网内广播一个特殊的帧,其中包含了自己的IP地址和MAC地址,以及目标主机的IP地址。该帧的目标MAC地址为广播地址FF-FF-FF-FF-FF-FF,表示所有设备都要接收该帧。

局域网内的所有设备都会收到该ARP请求帧,并根据其中的目标IP地址判断是否是自己。如果不是自己,则丢弃该帧,并且将发送者的IP地址和MAC地址加入自己的ARP缓存表中。如果是自己,则回复一个ARP应答(ARP reply),向发送者单播一个特殊的帧,其中包含了自己的IP地址和MAC地址,以及发送者的IP地址。该帧的目标MAC地址为发送者的MAC地址。

发送者收到该ARP应答帧后,就知道了目标主机的MAC地址,并将其加入自己的ARP缓存表中。然后就可以使用该MAC地址封装帧并发送出去。

当一个主机要发送数据给另一个主机时,如果目标主机与自己在同一局域网内,那么就可以直接使用ARP协议获取目标主机的MAC地址,并将其封装在帧中发送出去。但是,如果目标主机与自己不在同一局域网内,那么就需要经过路由器的转发。这时候,就需要知道路由器的MAC地址,而不是目标主机的MAC地址。下面我们用一个例子来说明这种情况下的工作过程。

假设有如下拓扑:

其中:

主机AIP10.0.0.1MAC00-16-EA-AE-3C-40

主机BIP10.0.0.2MAC00-16-EA-AE-3C-41

主机CIP10.0.0.3MAC00-16-EA-AE-3C-42

路由器R1Fa0/0接口IP10.0.0.254MAC00-16-EA-AE-3C-43

路由器R2Fa0/0接口IP10.1.0.254MAC00-16-EA-AE-3C-44

服务器SIP10.1.0.1MAC00-16-EA-AE-3C-45

现在假设主机A要向服务器S发送数据包,完整过程如下:

1)主机A发现目标IP与自己不在同一网段,需要经过路由器转发

2)查路由表获得R1IP地址及出接口(从哪个网卡发出),查ARP表无对应条目

3)发起ARP请求,目的IPR1,目的MAC为广播MACFF:FF:FF:FF:FF:FF),源IP和源MAC为主机A网卡的IPMAC

4R1收到ARP请求,将主机AIPMAC加入自己的ARP缓存表,用自身IPMAC响应主机AARP请求

5)主机A收到ARP响应,将R1IPMAC加入自己的ARP缓存表,用自身IPMAC为源,服务器SIPR1MAC为目的,封装数据帧,并将其转发给R1(此时数据帧源IP为主机A,目的IP为服务器S,源MAC为主机A,目的MACR1

6R1收到数据帧,根据目的IP查路由表,发现需要R2转发,查ARP表,无对应条目。以自身IPMAC为源,目的IPR2,目的MAC为广播发送ARP请求,并将来自主机A的数据帧丢弃。

7R2收到ARP请求,将R1IPMAC加入自己的ARP缓存表,用自身IPMAC响应主机R2ARP请求。

8R1收到ARP响应,将R2IPMAC加入自己的ARP缓存表

9)主机A发现超时,重发数据帧

10R1收到数据帧,查路由表,须经R2转发,查ARP表,获得R2MAC地址。将数据帧的源MAC修改为自身,目的MAC修改为R2,并将数据帧转发给R2(此时数据帧源IP为主机A,目的IP为服务器S,源MACR1,目的MACR2

11R2收到数据帧,根据目的IP查路由表,发现目标主机与自己在同一网段,查ARP表,无对应条目。以自身IPMAC为源,目的IP为服务器S,目的MAC为广播发送ARP请求,并将来自R1的数据帧丢弃。

12)服务器S收到ARP请求,将R2IPMAC加入自己的ARP缓存表,用自身IPMAC响应主机R2ARP请求。

13R2收到ARP响应,将服务器SIPMAC加入自己的ARP缓存表

14)主机A发现超时,重发数据帧

15R1收到数据帧,查路由表,须经R2转发,查ARP表,获得R2MAC地址。将数据帧的源MAC修改为自身,目的MAC修改为R2,并将数据帧转发给R2

16R2收到数据帧,查路由表,须经服务器S转发,查ARP表,获得服务器SMAC地址。将数据帧的源MAC修改为自身,目的MAC修改为服务器S,并将数据帧转发给服务器S(此时数据帧源IP为主机A,目的IP为服务器S,源MACR2。

IP地址和MAC地址区别

尽管IP地址和MAC地址都是用来标识网络中的设备,它们的本质和作用却有很大的区别。下面是两者的主要区别:

定义IP地址是用来标识网络上的设备,MAC地址是用来标识网络适配器(NIC)的。

唯一性IP地址在网络中是具有唯一性的,但是在全球范围内会有重复的情况。而MAC地址是在全球范围内都是唯一的。

分配方式IP地址由ISP分配,而MAC地址是由网络适配器(NIC)制造商分配。

使用场景IP地址是用来实现Internet上的数据传输,而MAC地址是用来实现局域网内的数据传输。

长度IP地址是32位二进制数,而MAC地址是48位二进制数。

 另外,还有一些其他的区别:

IP地址可以更改,而MAC地址无法更改。

IP地址是分级和分段的,可以根据网络的需求进行调整。而MAC地址是固定的,无法调整。

IP地址可以有多个,而MAC地址只有一个。

IP地址可以动态分配,而MAC地址一般都是静态分配。

总结

IP地址和MAC地址是计算机网络中非常重要的概念。尽管它们有着不同的作用和范围,但是它们之间存在着密切的关联。在网络通信中,IP地址和MAC地址都起着至关重要的作用。因此,学习和了解IP地址和MAC地址对于理解和解决网络通信问题非常重要。同时,了解IP地址和MAC地址也有助于我们更好地保护网络安全。

好了今天的分享就到这里,如果分享的内容对你有所帮助,欢迎点赞收藏转发!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/627267.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Xilinx原语——IDDR与ODDR的使用(Ultrascale系列)

Xilinx原语——IDDR与ODDR的使用(Ultrascale系列) 一、IDDR1.1 OPPOSITE_EDGE1.2 SAME_EDGE1.3 SAME_EDGE_PIPELINED1.4 三种模式异同 二、ODDR三、IDDR与ODDR仿真3.1 IDDR仿真3.1.1 IDDR顶层3.1.2 TestBench3.1.3 仿真结果 3.2 ODDR仿真3.2.1 ODDR顶层文…

5.2.9 无分类编址和CIDR

5.2.9 无分类编址和CIDR 前面我们知道,为了更加合理的使用IP地址,采用了子网划分的方法,事实证明子网划分这种网络编址,能够节省IP网络地址,但是到了1993年的时候因特网的增长速度还是让人们感觉到了这些技术它无法阻…

移动信道的多普勒扩展及相干时间

本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:https://github.com/timerring/information-theory 】或者公众号【AIShareLab】回复 信息论 获取。 文章目录 移动信道的多普勒扩…

深眸科技专注机器视觉的研发与创新,开启工业自动化、智能化进程

在智能制造、工业效能提升的社会背景之下,中国制造2025战略持续落实,工业制造业转型升级加速,作为人工智能领域重要技术之一的机器视觉,凭借着高精度、高准确度等优势检测能力,不断渗透进工业领域,并呈现出…

全网最全,性能测试-全链路压测问题总结,一篇概全...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 全链路压测可以给…

JavaEE(系列21) -- 传输层协议UDP 和 TCP

目录 1. 应用层和传输层的联系 2. UDP协议 2.1 UDP简介 2.2 UDP格式 2.2.1 目的端口和源端口 2.2.2 报文长度 2.2.3 校验和 3. TCP协议 3.1 TCP简介 3.2 TCP格式 3.2.1 数据偏移和选项(option) 3.2.2 保留项 3.2.3 6位控制位 3.2.4 32位序号和32位确认序号…

华为OD机试真题 Java 实现【滑动窗口】【2023 B卷 100分】,附详细解题思路

一、题目描述 有一个N个整数的数组,和一个长度为M的窗口,窗口从数组内的第一个数开始滑动直到窗口不能滑动为止,每次窗口滑动产生一个窗口和(窗口内所有数和和),求窗口滑动产生的所有窗口和的最大值。 二、输入描述 第一行输入一个正整数N,表示整数个数。(0<N<…

WebGPU 纹理与纹理类型基础 (D3D对纹理的描述比较详细)

纹理与纹理类型&#xff0c;D3D 官方文档描述的比较详细&#xff1a; 介绍 Direct3D 11 纹理 纹理资源是一个结构化的数据集合&#xff0c;用纹素的形式存储。纹素texel代表纹理的最小单位&#xff0c;可以被管线读写。与缓冲区不同&#xff0c;纹理可以在着色器中被纹理采…

中国电源管理芯片上市企业研发投入占比超10%,上海贝岭产品品类持续增加

近年来&#xff0c;中国电源管理芯片市场规模一直保持增长趋势&#xff0c;尽管中国电源管理芯片厂商起步较晚&#xff0c;但是在政策扶持背景下&#xff0c;集成电路国产产品对进口产品的替代效应明显&#xff0c;中国集成电路产品的品质和市场认可度日渐提升&#xff0c;部分…

而立之年——回顾我的渗透测试之路

为什么要转行 因为混得不好。 在成为渗透测试工程师之前&#xff0c;我干过很多工作。由于上学的时候天天打没戏摸鱼啥也不会&#xff0c;我的工作基本上都是体力活。包括但不限于&#xff1a;工厂普工、销售&#xff08;没有干销售的才能&#xff09;、搬运工、摆地摊等&…

JMeter性能测试系列一初识JMeter

1.JMeter介绍 Apache组织的Stefano Mazzocchi是JMeter项目的创始人。编写JMeter最初的目的是为了测试server的性能(后期被Tomcat替代)。随后&#xff0c;JMeter在Apache组织内部开始被其他项目所使用&#xff0c;并最终推广出来&#xff0c;成为独立的软件项目并不断更新&…

sa-token多端登陆实现,PC,APP登陆分别设置token过期时间

sa-token多端登陆实现&#xff0c;PC&#xff0c;APP登陆分别设置token过期时间 Sa-Token 介绍 Sa-Token 是一个轻量级 Java 权限认证框架&#xff0c;主要解决&#xff1a;登录认证、权限认证、单点登录、OAuth2.0、分布式Session会话、微服务网关鉴权 等一系列权限相关问题。…

hive on spark亲自编译,详细教程

hive on spark 进行编译操作 软件 hive 2.3.6 spark 2.0.0版本 hadoop-2.7.6版本 操作流程&#xff1a; hadoop-2.7.6 1、安装hadoop不说了。简单。 spark-2.0.0 2、下载spark-2.0.0的源码. https://archive.apache.org/dist/spark/spark-2.1.0/ 这个下载spark各个版本…

Logback自定义DBAppender保存系统日志到数据库

在系统中采用了spring boot logback&#xff0b;slf4j的日志框架&#xff0c;将系统日志记录到数据库。 相关参考来源&#xff1a; 官方文档-DBAppender Logback输出日志到自定义MySQL数据库&#xff08;重写DBAppender&#xff09; logback日志框架中filter的使用 1. 添加依…

【新版】系统架构设计师 - 系统配置与性能评价

个人总结&#xff0c;仅供参考&#xff0c;欢迎加好友一起讨论 文章目录 架构 - 系统配置与性能评价考点摘要系统性能概述性能指标性能调整阿姆达尔解决方案性能评价方法 架构 - 系统配置与性能评价 考点摘要 性能指标&#xff08;★★&#xff09;阿姆达尔解决方案&#xff…

java SSM 教师管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM 教师管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和 数据库&#xff0c;系统主要采用B…

工业深度学习软件 从标注 训练 到测试 再到现场部署

工业深度学习软件 从标注 训练 到测试 再到现场部署 M7000技术规格表 Producer Specification 影像系统 Imaging Sys 适配相机 supported cameras 支持海康&#xff0c;迈德威视&#xff0c;度申2D相机&#xff08;可根据需求增加适配其他厂家相机&#xff09; Support for Hi…

22AP30 H.265 编解码处理器

22AP30 H.265 编解码处理器 主要特点 SVP&#xff08;Smart Vision Processing&#xff09;  图像分析工具推理引擎&#xff08;NNIE&#xff09; − 支持多种图像分析工具 − 1.2Tops运算性能 处理器内核  ARM Cortex A53 四核1.15GHz − 32KB L1 I-Cache&#xff0c;32KB…

小程序页面事件与wxs脚本

文章和代码已经归档至【Github仓库&#xff1a;https://github.com/timerring/front-end-tutorial 】或者公众号【AIShareLab】回复 小程序 也可获取。 文章目录 小程序视图与逻辑页面导航声明式导航编程式导航导航传参 页面事件下拉刷新事件上拉触底事件上拉触底案例 自定义编…

一级建造师执业资格考试--工程管理--速学36记--联想法

第一记&#xff1a;项目管理 第二记&#xff1a;项目管理的核心 第三记&#xff1a;项目总承包方的工作程序 第四记&#xff1a;项目质量控制体系建立 第五记&#xff1a;项目质量控制体系运行 第六记&#xff1a;施工过程质量验收不合格的处理方法 第七记&#xff1a;装配式混…