Arrays源码

news2025/1/10 20:24:12

介绍

java.util中的工具类,提供数组相关的常用操作,排序、比较、填充、二分查找等功能

该类还包含一个静态内部类ArrayList,其中add、remove、clear方法都是没有实现的。

常量&变量

    /**
     * The minimum array length below which a parallel sorting
     * algorithm will not further partition the sorting task. Using
     * smaller sizes typically results in memory contention across
     * tasks that makes parallel speedups unlikely.
     * 并行排序的最小数组长度8192,数组长度小于这个数则不再划分数组
     * 数组长度较小会导致排序的任务竞争内存导致效率降低
     */
    private static final int MIN_ARRAY_SORT_GRAN = 1 << 13;
    
    /**
     * Tuning parameter: list size at or below which insertion sort will be
     * used in preference to mergesort.
     * To be removed in a future release.
     * 小于等于这个值时,使用插入排序优先于归并排序。在未来的版本将被废弃
     */
    private static final int INSERTIONSORT_THRESHOLD = 7;

构造方法

    // Suppresses default constructor, ensuring non-instantiability.
    //私有构造函数,确保不会进行实例化
    private Arrays() {}

内部类

NaturalOrder

    /**
     * A comparator that implements the natural ordering of a group of
     * mutually comparable elements. May be used when a supplied
     * comparator is null. To simplify code-sharing within underlying
     * implementations, the compare method only declares type Object
     * for its second argument.
     *
     * Arrays class implementor's note: It is an empirical matter
     * whether ComparableTimSort offers any performance benefit over
     * TimSort used with this comparator.  If not, you are better off
     * deleting or bypassing ComparableTimSort.  There is currently no
     * empirical case for separating them for parallel sorting, so all
     * public Object parallelSort methods use the same comparator
     * based implementation.
     * 实现一组相互比较元素的自然排序的比较器。可在提供的比较器为空时使用。
     */
    static final class NaturalOrder implements Comparator<Object> {
        @SuppressWarnings("unchecked")
        public int compare(Object first, Object second) {
            return ((Comparable<Object>)first).compareTo(second);
        }
        static final NaturalOrder INSTANCE = new NaturalOrder();
    }

LegacyMergeSort

    /**
     * Old merge sort implementation can be selected (for
     * compatibility with broken comparators) using a system property.
     * Cannot be a static boolean in the enclosing class due to
     * circular dependencies. To be removed in a future release.
     * 经典的归并排序,不过它即将被废弃了,只是用来兼容老的排序方法,
     */
    static final class LegacyMergeSort {
        private static final boolean userRequested =
            java.security.AccessController.doPrivileged(
                new sun.security.action.GetBooleanAction(
                    "java.util.Arrays.useLegacyMergeSort")).booleanValue();
    }

ArrayList

    /**
     * @serial include
     */
    private static class ArrayList<E> extends AbstractList<E>
        implements RandomAccess, java.io.Serializable
    {
        private static final long serialVersionUID = -2764017481108945198L;
        private final E[] a;

        ArrayList(E[] array) {
            a = Objects.requireNonNull(array);
        }

        @Override
        public int size() {
            return a.length;
        }

        @Override
        public Object[] toArray() {
            return a.clone();
        }

        @Override
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            int size = size();
            if (a.length < size)
                return Arrays.copyOf(this.a, size,
                                     (Class<? extends T[]>) a.getClass());
            System.arraycopy(this.a, 0, a, 0, size);
            if (a.length > size)
                a[size] = null;
            return a;
        }

        @Override
        public E get(int index) {
            return a[index];
        }

        @Override
        public E set(int index, E element) {
            E oldValue = a[index];
            a[index] = element;
            return oldValue;
        }

        @Override
        public int indexOf(Object o) {
            E[] a = this.a;
            if (o == null) {
                for (int i = 0; i < a.length; i++)
                    if (a[i] == null)
                        return i;
            } else {
                for (int i = 0; i < a.length; i++)
                    if (o.equals(a[i]))
                        return i;
            }
            return -1;
        }

        @Override
        public boolean contains(Object o) {
            return indexOf(o) != -1;
        }

        @Override
        public Spliterator<E> spliterator() {
            return Spliterators.spliterator(a, Spliterator.ORDERED);
        }

        @Override
        public void forEach(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            for (E e : a) {
                action.accept(e);
            }
        }

        @Override
        public void replaceAll(UnaryOperator<E> operator) {
            Objects.requireNonNull(operator);
            E[] a = this.a;
            for (int i = 0; i < a.length; i++) {
                a[i] = operator.apply(a[i]);
            }
        }

        @Override
        public void sort(Comparator<? super E> c) {
            Arrays.sort(a, c);
        }
    }

常用方法

void rangeCheck(int arrayLength, int fromIndex, int toIndex)

    /**
     * Checks that {@code fromIndex} and {@code toIndex} are in
     * the range and throws an exception if they aren't.
     * 私有方法,检查是否越界,超出范围抛出异常
     */
    private static void rangeCheck(int arrayLength, int fromIndex, int toIndex) {
        if (fromIndex > toIndex) {
            throw new IllegalArgumentException(
                    "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
        }
        if (fromIndex < 0) {
            throw new ArrayIndexOutOfBoundsException(fromIndex);
        }
        if (toIndex > arrayLength) {
            throw new ArrayIndexOutOfBoundsException(toIndex);
        }
    }

sort

对于int[]、byte[]、long[]等基本类型数组的排序,使用DualPivotQuicksort类进行排序,可选范围。

注意这个类改动了双轴快排的策略,使用了其他的排序方法,查看其源码可以知道还使用了计数排序、插入排序、归并排序。很多会导致其他版本快排退化到O(n^2)的数据集使用这个类仍能保证O(nlogn)

单轴快排和双轴快排

  • 快排的思想是分治,方法是递归
  • 单轴快排只有一个划分点,对点两侧的区间进行递归
  • 双轴快排有两个划分点,将区间分为三段,效率会高一些
 /**
     * Sorts the specified array into ascending numerical order.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     *          按照数字顺序排列指定的int数组。
     */
    public static void sort(int[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }

    /**
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
     * the range to be sorted is empty.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
     *     按升序排列int数组的指定范围。
     */
    public static void sort(int[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
    }

    /**
     * Sorts the specified array into ascending numerical order.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     *          按照数字顺序排列指定的long数组。
     */
    public static void sort(long[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }

    /**
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
     * the range to be sorted is empty.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
     *     按升序排列long数组的指定范围。
     */
    public static void sort(long[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
    }

    /**
     * Sorts the specified array into ascending numerical order.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     *          按照数字顺序排列指定的short数组。
     */
    public static void sort(short[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }

    /**
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
     * the range to be sorted is empty.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
     *     按升序排列short数组的指定范围。
     */
    public static void sort(short[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
    }

    /**
     * Sorts the specified array into ascending numerical order.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     *          按照数字顺序排列指定的char数组。
     */
    public static void sort(char[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }

    /**
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
     * the range to be sorted is empty.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
     *     按升序排列char数组的指定范围。
     */
    public static void sort(char[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
    }

    /**
     * Sorts the specified array into ascending numerical order.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     *          按照数字顺序排列指定的byte数组。
     */
    public static void sort(byte[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
     * the range to be sorted is empty.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
     *     按升序排列byte数组的指定范围。
     */
    public static void sort(byte[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
    }

    /**
     * Sorts the specified array into ascending numerical order.
     *
     * <p>The {@code <} relation does not provide a total order on all float
     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
     * value compares neither less than, greater than, nor equal to any value,
     * even itself. This method uses the total order imposed by the method
     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
     * other value and all {@code Float.NaN} values are considered equal.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     *          按升序排列float数组的指定范围。
     */
    public static void sort(float[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }

    /**
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
     * the range to be sorted is empty.
     *
     * <p>The {@code <} relation does not provide a total order on all float
     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
     * value compares neither less than, greater than, nor equal to any value,
     * even itself. This method uses the total order imposed by the method
     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
     * other value and all {@code Float.NaN} values are considered equal.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
     *     按升序排列float数组的指定范围。
     */
    public static void sort(float[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
    }

    /**
     * Sorts the specified array into ascending numerical order.
     *
     * <p>The {@code <} relation does not provide a total order on all double
     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
     * value compares neither less than, greater than, nor equal to any value,
     * even itself. This method uses the total order imposed by the method
     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
     * other value and all {@code Double.NaN} values are considered equal.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     *          按照数字顺序排列指定的double数组。
     */
    public static void sort(double[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }

    /**
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
     * the range to be sorted is empty.
     *
     * <p>The {@code <} relation does not provide a total order on all double
     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
     * value compares neither less than, greater than, nor equal to any value,
     * even itself. This method uses the total order imposed by the method
     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
     * other value and all {@code Double.NaN} values are considered equal.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
     *     按升序排列double数组的指定范围。
     */
    public static void sort(double[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
    }

    /**
     * Sorts the specified array of objects into ascending order, according
     * to the {@linkplain Comparable natural ordering} of its elements.
     * All elements in the array must implement the {@link Comparable}
     * interface.  Furthermore, all elements in the array must be
     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must
     * not throw a {@code ClassCastException} for any elements {@code e1}
     * and {@code e2} in the array).
     *
     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
     * not be reordered as a result of the sort.
     *
     * <p>Implementation note: This implementation is a stable, adaptive,
     * iterative mergesort that requires far fewer than n lg(n) comparisons
     * when the input array is partially sorted, while offering the
     * performance of a traditional mergesort when the input array is
     * randomly ordered.  If the input array is nearly sorted, the
     * implementation requires approximately n comparisons.  Temporary
     * storage requirements vary from a small constant for nearly sorted
     * input arrays to n/2 object references for randomly ordered input
     * arrays.
     *
     * <p>The implementation takes equal advantage of ascending and
     * descending order in its input array, and can take advantage of
     * ascending and descending order in different parts of the the same
     * input array.  It is well-suited to merging two or more sorted arrays:
     * simply concatenate the arrays and sort the resulting array.
     *
     * <p>The implementation was adapted from Tim Peters's list sort for Python
     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
     * Sorting and Information Theoretic Complexity", in Proceedings of the
     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
     * January 1993.
     *
     * @param a the array to be sorted
     * @throws ClassCastException if the array contains elements that are not
     *         <i>mutually comparable</i> (for example, strings and integers)
     * @throws IllegalArgumentException (optional) if the natural
     *         ordering of the array elements is found to violate the
     *         {@link Comparable} contract
     *         根据元素的自然顺序,将指定的对象数组按升序排序。
     */
    public static void sort(Object[] a) {
        if (LegacyMergeSort.userRequested)
            legacyMergeSort(a);
        else
            ComparableTimSort.sort(a, 0, a.length, null, 0, 0);
    }

    /**
     * Sorts the specified range of the specified array of objects into
     * ascending order, according to the
     * {@linkplain Comparable natural ordering} of its
     * elements.  The range to be sorted extends from index
     * {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive.
     * (If {@code fromIndex==toIndex}, the range to be sorted is empty.)  All
     * elements in this range must implement the {@link Comparable}
     * interface.  Furthermore, all elements in this range must be <i>mutually
     * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
     * {@code ClassCastException} for any elements {@code e1} and
     * {@code e2} in the array).
     *
     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
     * not be reordered as a result of the sort.
     *
     * <p>Implementation note: This implementation is a stable, adaptive,
     * iterative mergesort that requires far fewer than n lg(n) comparisons
     * when the input array is partially sorted, while offering the
     * performance of a traditional mergesort when the input array is
     * randomly ordered.  If the input array is nearly sorted, the
     * implementation requires approximately n comparisons.  Temporary
     * storage requirements vary from a small constant for nearly sorted
     * input arrays to n/2 object references for randomly ordered input
     * arrays.
     *
     * <p>The implementation takes equal advantage of ascending and
     * descending order in its input array, and can take advantage of
     * ascending and descending order in different parts of the the same
     * input array.  It is well-suited to merging two or more sorted arrays:
     * simply concatenate the arrays and sort the resulting array.
     *
     * <p>The implementation was adapted from Tim Peters's list sort for Python
     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
     * Sorting and Information Theoretic Complexity", in Proceedings of the
     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
     * January 1993.
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element (inclusive) to be
     *        sorted
     * @param toIndex the index of the last element (exclusive) to be sorted
     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
     *         (optional) if the natural ordering of the array elements is
     *         found to violate the {@link Comparable} contract
     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
     *         {@code toIndex > a.length}
     * @throws ClassCastException if the array contains elements that are
     *         not <i>mutually comparable</i> (for example, strings and
     *         integers).
     *         对指定对象升序排列的数组的指定范围内,根据natural ordering的元素。
     *         根据元素的自然顺序,将对象数组指定范围按升序排序。
     */
    public static void sort(Object[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        if (LegacyMergeSort.userRequested)
            legacyMergeSort(a, fromIndex, toIndex);
        else
            ComparableTimSort.sort(a, fromIndex, toIndex, null, 0, 0);
    }

    /**
     * Sorts the specified array of objects according to the order induced by
     * the specified comparator.  All elements in the array must be
     * <i>mutually comparable</i> by the specified comparator (that is,
     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
     * for any elements {@code e1} and {@code e2} in the array).
     *
     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
     * not be reordered as a result of the sort.
     *
     * <p>Implementation note: This implementation is a stable, adaptive,
     * iterative mergesort that requires far fewer than n lg(n) comparisons
     * when the input array is partially sorted, while offering the
     * performance of a traditional mergesort when the input array is
     * randomly ordered.  If the input array is nearly sorted, the
     * implementation requires approximately n comparisons.  Temporary
     * storage requirements vary from a small constant for nearly sorted
     * input arrays to n/2 object references for randomly ordered input
     * arrays.
     *
     * <p>The implementation takes equal advantage of ascending and
     * descending order in its input array, and can take advantage of
     * ascending and descending order in different parts of the the same
     * input array.  It is well-suited to merging two or more sorted arrays:
     * simply concatenate the arrays and sort the resulting array.
     *
     * <p>The implementation was adapted from Tim Peters's list sort for Python
     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
     * Sorting and Information Theoretic Complexity", in Proceedings of the
     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
     * January 1993.
     *
     * @param <T> the class of the objects to be sorted
     * @param a the array to be sorted
     * @param c the comparator to determine the order of the array.  A
     *        {@code null} value indicates that the elements'
     *        {@linkplain Comparable natural ordering} should be used.
     * @throws ClassCastException if the array contains elements that are
     *         not <i>mutually comparable</i> using the specified comparator
     * @throws IllegalArgumentException (optional) if the comparator is
     *         found to violate the {@link Comparator} contract
     *         根据指定的比较器对指定的对象数组进行排序。
     */
    public static <T> void sort(T[] a, Comparator<? super T> c) {
        if (c == null) {
            sort(a);
        } else {
            if (LegacyMergeSort.userRequested)
                legacyMergeSort(a, c);
            else
                TimSort.sort(a, 0, a.length, c, null, 0, 0);
        }
    }

    /**
     * Sorts the specified range of the specified array of objects according
     * to the order induced by the specified comparator.  The range to be
     * sorted extends from index {@code fromIndex}, inclusive, to index
     * {@code toIndex}, exclusive.  (If {@code fromIndex==toIndex}, the
     * range to be sorted is empty.)  All elements in the range must be
     * <i>mutually comparable</i> by the specified comparator (that is,
     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
     * for any elements {@code e1} and {@code e2} in the range).
     *
     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
     * not be reordered as a result of the sort.
     *
     * <p>Implementation note: This implementation is a stable, adaptive,
     * iterative mergesort that requires far fewer than n lg(n) comparisons
     * when the input array is partially sorted, while offering the
     * performance of a traditional mergesort when the input array is
     * randomly ordered.  If the input array is nearly sorted, the
     * implementation requires approximately n comparisons.  Temporary
     * storage requirements vary from a small constant for nearly sorted
     * input arrays to n/2 object references for randomly ordered input
     * arrays.
     *
     * <p>The implementation takes equal advantage of ascending and
     * descending order in its input array, and can take advantage of
     * ascending and descending order in different parts of the the same
     * input array.  It is well-suited to merging two or more sorted arrays:
     * simply concatenate the arrays and sort the resulting array.
     *
     * <p>The implementation was adapted from Tim Peters's list sort for Python
     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
     * Sorting and Information Theoretic Complexity", in Proceedings of the
     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
     * January 1993.
     *
     * @param <T> the class of the objects to be sorted
     * @param a the array to be sorted
     * @param fromIndex the index of the first element (inclusive) to be
     *        sorted
     * @param toIndex the index of the last element (exclusive) to be sorted
     * @param c the comparator to determine the order of the array.  A
     *        {@code null} value indicates that the elements'
     *        {@linkplain Comparable natural ordering} should be used.
     * @throws ClassCastException if the array contains elements that are not
     *         <i>mutually comparable</i> using the specified comparator.
     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
     *         (optional) if the comparator is found to violate the
     *         {@link Comparator} contract
     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
     *         {@code toIndex > a.length}
     *         根据指定的比较器对指定的对象数组的指定范围进行排序。
     */
    public static <T> void sort(T[] a, int fromIndex, int toIndex,
                                Comparator<? super T> c) {
        if (c == null) {
            sort(a, fromIndex, toIndex);
        } else {
            rangeCheck(a.length, fromIndex, toIndex);
            if (LegacyMergeSort.userRequested)
                legacyMergeSort(a, fromIndex, toIndex, c);
            else
                TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0);
        }
    }

mergeSort

Arrays 在对 Object 数组进行排序是会使用到 legacyMergeSort 和 ComparableTimSort.sort,其中 legacyMergeSort 调用的就是 mergeSort 方法

    /**
     * Src is the source array that starts at index 0
     * Dest is the (possibly larger) array destination with a possible offset
     * low is the index in dest to start sorting
     * high is the end index in dest to end sorting
     * off is the offset to generate corresponding low, high in src
     * To be removed in a future release.
     */
    @SuppressWarnings({"unchecked", "rawtypes"})mergeSort
    private static void mergeSort(Object[] src,
                                  Object[] dest,
                                  int low,
                                  int high,
                                  int off) {
        int length = high - low;

        // Insertion sort on smallest arrays
        //需要排序的长度小于7 使用插入排序
        if (length < INSERTIONSORT_THRESHOLD) {
            for (int i=low; i<high; i++)
                //倒序遍历
                for (int j=i; j>low &&
                         //左侧的值比遍历到的值大,交换位置
                         ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
                    swap(dest, j, j-1);
            return;
        }

        // Recursively sort halves of dest into src
        int destLow  = low;
        int destHigh = high;
        low  += off;
        high += off;
        int mid = (low + high) >>> 1;
        //将数组分成两部分进行排序
        mergeSort(dest, src, low, mid, -off);
        mergeSort(dest, src, mid, high, -off);

        // If list is already sorted, just copy from src to dest.  This is an
        // optimization that results in faster sorts for nearly ordered lists.
        //两个数组排完序,如果左侧数组的最大值小于右侧数组的最小值,说明整体有序
        if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
            //拷贝
            System.arraycopy(src, low, dest, destLow, length);
            return;
        }

        // Merge sorted halves (now in src) into dest
        //否则进行归并排序
        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
            if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
                dest[i] = src[p++];
            else
                dest[i] = src[q++];
        }
    }

parallelSort

对基本类型的并行排序,以int[]为例。提供范围排序

    /**
     * Sorts the specified array into ascending numerical order.
     *
     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
     * array into sub-arrays that are themselves sorted and then merged. When
     * the sub-array length reaches a minimum granularity, the sub-array is
     * sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort}
     * method. If the length of the specified array is less than the minimum
     * granularity, then it is sorted using the appropriate {@link
     * Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a
     * working space no greater than the size of the original array. The
     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
     * execute any parallel tasks.
     *
     * @param a the array to be sorted
     *
     * @since 1.8
     * 这个排序算法是个将数组划分为几个子数组分别排序然后合并的并行排序-合并过程。
     * 当子数组长度达到最小粒度,或者数组小于设定的最小粒度,
     * 使用类似Arrays.sort()的方法(DualPivotQuickSort)来进行排序。
     * 这个算法需要一个不大于原数组大小的额外空间,使用ForkJoin common pool
     * ForkJoinPool#commonPool())来执行并行的排序任务
     */
    public static void parallelSort(int[] a) {
        int n = a.length, p, g;
        //如果数组长度小于分组的最小粒度或者只有一个执行线程,使用DualPivotQuicksort
        if (n <= MIN_ARRAY_SORT_GRAN ||
            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
        else
            //g表示粒度,参数4、5、6分别为排序数组开始位置,需要排序的长度和额外空间的开始位置
            //g = n / (p << 2)不可小于最小粒度,否则使用最小粒度
            new ArraysParallelSortHelpers.FJInt.Sorter
                (null, a, new int[n], 0, n, 0,
                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
                 MIN_ARRAY_SORT_GRAN : g).invoke();
    }

equals

以int为例

    /**
     * Returns <tt>true</tt> if the two specified arrays of ints are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     */
    public static boolean equals(int[] a, int[] a2) {
        if (a==a2)
            return true;
        //存在null,则false
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;
        //依次比较
        for (int i=0; i<length; i++)
            if (a[i] != a2[i])
                return false;

        return true;
    }

deepEquals

    /**
     * Returns <tt>true</tt> if the two specified arrays are <i>deeply
     * equal</i> to one another.  Unlike the {@link #equals(Object[],Object[])}
     * method, this method is appropriate for use with nested arrays of
     * arbitrary depth.
     *
     * <p>Two array references are considered deeply equal if both
     * are <tt>null</tt>, or if they refer to arrays that contain the same
     * number of elements and all corresponding pairs of elements in the two
     * arrays are deeply equal.
     *
     * <p>Two possibly <tt>null</tt> elements <tt>e1</tt> and <tt>e2</tt> are
     * deeply equal if any of the following conditions hold:
     * <ul>
     *    <li> <tt>e1</tt> and <tt>e2</tt> are both arrays of object reference
     *         types, and <tt>Arrays.deepEquals(e1, e2) would return true</tt>
     *    <li> <tt>e1</tt> and <tt>e2</tt> are arrays of the same primitive
     *         type, and the appropriate overloading of
     *         <tt>Arrays.equals(e1, e2)</tt> would return true.
     *    <li> <tt>e1 == e2</tt>
     *    <li> <tt>e1.equals(e2)</tt> would return true.
     * </ul>
     * Note that this definition permits <tt>null</tt> elements at any depth.
     *
     * <p>If either of the specified arrays contain themselves as elements
     * either directly or indirectly through one or more levels of arrays,
     * the behavior of this method is undefined.
     *
     * @param a1 one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     * @see #equals(Object[],Object[])
     * @see Objects#deepEquals(Object, Object)
     * @since 1.5
     * 深入比较,即比较多维数组。deepHashcode和deepToString也是如此。
     */
    public static boolean deepEquals(Object[] a1, Object[] a2) {
        if (a1 == a2)
            return true;
        if (a1 == null || a2==null)
            return false;
        int length = a1.length;
        //长度不同直接false
        if (a2.length != length)
            return false;

        for (int i = 0; i < length; i++) {
            Object e1 = a1[i];
            Object e2 = a2[i];

            if (e1 == e2)
                continue;
            if (e1 == null)
                return false;

            // Figure out whether the two elements are equal
            //递归比较,记录是否相等
            boolean eq = deepEquals0(e1, e2);

            if (!eq)
                return false;
        }
        return true;
    }

asList

返回固定大小的ArrayList,这个是Arrays内部类,注意在使用时和java.util.ArrayList的区别。这个方法和Collection.toArray方法充当了数组和集合的桥梁

    /**
     * Returns a fixed-size list backed by the specified array.  (Changes to
     * the returned list "write through" to the array.)  This method acts
     * as bridge between array-based and collection-based APIs, in
     * combination with {@link Collection#toArray}.  The returned list is
     * serializable and implements {@link RandomAccess}.
     *
     * <p>This method also provides a convenient way to create a fixed-size
     * list initialized to contain several elements:
     * <pre>
     *     List&lt;String&gt; stooges = Arrays.asList("Larry", "Moe", "Curly");
     * </pre>
     *
     * @param <T> the class of the objects in the array
     * @param a the array by which the list will be backed
     * @return a list view of the specified array
     */
    @SafeVarargs
    @SuppressWarnings("varargs")
    public static <T> List<T> asList(T... a) {
        return new ArrayList<>(a);
    }

binarySearch

二分查找,显然数组必须是有序的,否则结果不确定了。如果数组里面有多个相同的,不能保证找到哪一个

以int为例

  /**
     * Searches the specified array of ints for the specified value using the
     * binary search algorithm.  The array must be sorted (as
     * by the {@link #sort(int[])} method) prior to making this call.  If it
     * is not sorted, the results are undefined.  If the array contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(int[] a, int key) {
        //调用私有方法
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array of ints for the specified value using the
     * binary search algorithm.
     * The range must be sorted (as
     * by the {@link #sort(int[], int, int)} method)
     * prior to making this call.  If it
     * is not sorted, the results are undefined.  If the range contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(int[] a, int fromIndex, int toIndex,
                                   int key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

我们可以看到到最后都会调用binarySearch0(a, fromIndex, toIndex, key)方法。

    // Like public version, but without range checks.
    private static int binarySearch0(int[] a, int fromIndex, int toIndex,
                                     int key) {
        // 定义数组开始位置
        int low = fromIndex;
        // 定义数组结束位置
        int high = toIndex - 1;
        // 开始位置 <= 结束位置
        while (low <= high) {
            // 数组mid位置值
            int mid = (low + high) >>> 1;
            //下标mid位置的值
            int midVal = a[mid];
            //小于搜索的值
            if (midVal < key)
                //二分 查找后面的部分 
                low = mid + 1;
            else if (midVal > key)
                //二分 查找前面的部分 
                high = mid - 1;
            else
                return mid; // key found  找到了
        }
        return -(low + 1);  // key not found.  没找着,保证为负
    }

当出现重复元素时会取哪个下标

从源码可分析出查找的过程:

image-20230604092639295

第一次循环:[0,1,2,3,4,5]二分为[0,1],[3.4.5] mid为2

第二次循环:[0,1] 二分为[0],[1] mid为 0 [3,4,5]二分为[3] ,[5] ,mid为4 此时搜索0或4,直接返回

第三次循环:剩下[1],[3],[5],此时搜索1,3或5,直接返回

image-20230604092649778

那么,如果出现重复元素时

    @Test
    public void test(){
        System.out.println("当前数组长度为奇数时:");
        int[] sort = new int[]{10,10,30,40,50,60,70};
        int index = Arrays.binarySearch(sort,10);
        System.out.println("10的下标为:"+index);
        sort = new int[]{10,20,20,40,50,60,70};
        index = Arrays.binarySearch(sort,20);
        System.out.println("20的下标为:"+index);
        sort = new int[]{10,20,30,30,50,60,70};
        index = Arrays.binarySearch(sort,30);
        System.out.println("30的下标为:"+index);
        sort = new int[]{10,20,30,40,40,60,70};
        index = Arrays.binarySearch(sort,40);
        System.out.println("40的下标为:"+index);
        sort = new int[]{10,20,30,40,50,50,70};
        index = Arrays.binarySearch(sort,50);
        System.out.println("50的下标为:"+index);
        sort = new int[]{10,20,30,40,40,60,60};
        index = Arrays.binarySearch(sort,60);
        System.out.println("60的下标为:"+index);
        System.out.println("--------------");

        System.out.println("当前数组长度为偶数时:");
        sort = new int[]{10,10,30,40,50,60};
        index = Arrays.binarySearch(sort,10);
        System.out.println("10的下标为:"+index);
        sort = new int[]{10,20,20,40,50,60};
        index = Arrays.binarySearch(sort,20);
        System.out.println("20的下标为:"+index);
        sort = new int[]{10,20,30,30,50,60};
        index = Arrays.binarySearch(sort,30);
        System.out.println("30的下标为:"+index);
        sort = new int[]{10,20,30,40,40,60};
        index = Arrays.binarySearch(sort,40);
        System.out.println("40的下标为:"+index);
        sort = new int[]{10,20,30,40,50,50};
        index = Arrays.binarySearch(sort,50);
        System.out.println("50的下标为:"+index);
    }

image-20230604105437709

现在我们可以得出结论,

  • 当数组长度为奇数时,数组中有重复元素,Arrays.binarySearch()会优先返回奇数且靠近当前区间中间的下标
  • 当数组长度为偶数时,数组中有重复元素,Arrays.binarySearch()会优先返回偶数且靠近当前区间中间的下标

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/616450.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

测试人总结怎么写?一篇文章详细总结全了!

目录 前言&#xff1a; 总结内容应包括哪些 不可缺少的模板-前期准备 总结过去-用数据来说话 纵向数据 横向数据 展望未来-做好规划 总结亮点 从其他人学到的点 总结弊病 结尾&#xff1a; 前言&#xff1a; 在这一年里&#xff0c;我作为一名测试人员&#xff0c;不断努力…

Tree 树形控件一级菜单没有复选框,子菜单有复选框,如何实现?

<el-dialogtitle"技术职称选择":visible.sync"isShow"width"30%"top"50px":before-close"closeInputSelectedDepDialog"><div class"tree-content"><el-treeclass"filter-tree my-left-tree&…

AMD HD7850 4G显卡刷Bios验真伪(二)

结果就是&#xff1a;开机黑屏&#xff0c;使用HD7850的bios无法识别它… 秉着寻根问底的原则&#xff0c;继续冲浪找线索~ 是的 你猜对了&#xff0c;不出意外的话 就出了意外… 初步断定&#xff0c;这货是7850的阉割版Radeon HD 7850 768SP 1. 首先&#xff0c;尝试在泡泡…

Spring高手之路3——揭秘Spring依赖注入和SpEL表达式

本篇会给大家举出各种Spring属性依赖注入的例子&#xff0c;方便大家理解。 文章目录 1. setter属性注入1.1 使用XML进行setter方法注入1.2 使用Bean注解进行setter方法注入1.3 setter方法注入完整代码示例 2. 构造器注入2.1 使用XML进行构造器注入2.2 使用Bean注解进行构造器属…

面试经历:我为什么选择的测试的?

目录 前言&#xff1a; 判定缺陷间的重复及依赖关系需要开发能力 使用自动化测试工具需要开发能力 黑盒测试偏爱开发能力 说明 白盒测试需要开发能力 安全测试需要开发能力 开发测试工具 前言&#xff1a; 不知不觉已经从事软件测试六年了&#xff0c;从毕业到进入外包公司外…

Android系统的Ashmem匿名共享内存系统分析(5)- 实现共享的原理

声明 其实对于Android系统的Ashmem匿名共享内存系统早就有分析的想法&#xff0c;记得2019年6、7月份Mr.Deng离职期间约定一起对其进行研究的&#xff0c;但因为我个人问题没能实施这个计划&#xff0c;留下些许遗憾…文中参考了很多书籍及博客内容&#xff0c;可能涉及的比较…

SSM 框架

ssm框架是spring MVC &#xff0c;spring和mybatis框架的整合&#xff0c;是标准的MVC模式&#xff0c;将整个系统划分为表现层&#xff0c;controller层&#xff0c;service层&#xff0c;DAO层四层。ssm框架是目前比较主流的Java EE企业级框架&#xff0c;适用于搭建各种大型…

张小飞的Java之路——第四十六章——网络编程基础

写在前面&#xff1a; 视频是什么东西&#xff0c;有看文档精彩吗&#xff1f; 视频是什么东西&#xff0c;有看文档速度快吗&#xff1f; 视频是什么东西&#xff0c;有看文档效率高吗&#xff1f; 诸小亮&#xff1a;关于网络你了解多少&#xff1f; 张小飞&#xff1a…

五月份跳槽了,历经阿里测开岗4轮面试,不出意外,还是被刷了....

大多数情况下&#xff0c;测试员的个人技能成长速度&#xff0c;远远大于公司规模或业务的成长速度。所以&#xff0c;跳槽成为了这个行业里最常见的一个词汇。 前几天&#xff0c;我看到有朋友留言说&#xff0c;他在面试阿里的测试开发工程师的时候&#xff0c;灵魂拷问三小…

Java开发工程师是做什么的?高考结束最重要的专业选择!

各位同学大家好&#xff0c;我是小源&#xff0c;明天就是高考了&#xff0c;对于正常的一个考生来说&#xff0c;专本线的同学已经开始陆陆续续准备看专业。今天&#xff0c;好程序员分享一个专业&#xff0c;他的名字叫做Java开发工程师&#xff0c;不知道同学有没有听说过这…

【Linux学习】多线程——信号量 | 基于环形队列的生产者消费者模型 | 自旋锁 | 读写锁

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《Linux学习》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 目录 一、 信号量1.1 概念1.2 信号量的基本操作1.3 信号量的基本使用接口 二、基于环形队列的生产…

第8章:SpringMVC的文件上传和下载

一、文件上传和下载 1.文件下载 使用ResponseEntity用于控制器方法的返回值类型&#xff0c;该控制器方法的返回值就是响应到浏览器的响应报文。使用ResponseEntity实现下载文件的功能。 ①创建file.html ② 在FileController.java类里面 文件不管是上传还是下载&#xff0…

思科无线AC旁挂并由第三方网关下发业务上网VLAN的案例

在企业网络环境中&#xff0c;思科无线AC&#xff08;Access Controller&#xff09;常用于无线网络的管理和控制。通常情况下&#xff0c;AC会负责分配无线设备的IP地址和VLAN标识&#xff0c;但在某些特定场景下&#xff0c;我们可能需要通过第三方网关来下发业务上网所需的V…

高频Postman接口测试面试题,我面试没通过的原因找到了

目录 一、Postman在工作中使用流程是什么样的&#xff1f; 二、你使用过Postman的哪些功能&#xff1f; 三、Postman如何管理测试环境&#xff1f; 四、Postman如何实现接口关联&#xff1f; 五、Postman参数化有哪几种方式&#xff1f; 六、Postman中全局/环境/集合变量…

Python和PHP相比有什么优势?我来聊聊深入学习的七个关键点

今天要跟大家谈一下一个高中生被Python培训机构坑的真实案例&#xff0c;披着大数据的壳子。这个高中生进去的时候&#xff0c;他们承诺不管什么学历包分配&#xff0c;毕业后直接上岗。这种承诺肯定是不靠谱的&#xff0c;因为基本上只要说出这句话的包分配&#xff0c;都是很…

如何从零开始构建 API ?

假设你请承包商从零开始建造一座房子&#xff0c;你肯定期望他们交付最高质量的房子。他们必须通过检查、遵守安全规范并遵循项目中约定的要求。因为建房子可容不得走捷径。如果承包商经常走捷径&#xff0c;他们的声誉会受到影响&#xff0c;从而失去客户。其实&#xff0c;开…

jmeter-分布式部署之负载机的设置

目录 引言 一、windows下负载机的配置&#xff08;执行机&#xff09; 二、linux下负载机的配置 三、错误总结 写在最后 引言 今天想和大家聊一下关于jmeter分布式部署中负载机的设置问题。作为一个自动化测试工具&#xff0c;jmeter在性能测试方面有着很强的优势&#x…

NLP(3) Text Classification

文章目录 OverviewText classification 的主要任务Topic ClassificationSentiment AnalysisNative Language IdentificationNatural Language Inference 如何构造 Text ClassifierClassification AlgorithmsBias - Variance Balance朴素贝叶斯Logistic RegressionSupport Vecto…

chatgpt赋能python:Python如何倒序输出:一步步教你实现

Python如何倒序输出&#xff1a;一步步教你实现 Python是一种通用编程语言&#xff0c;具有快速开发、易学易用等诸多优点&#xff0c;在大数据、人工智能、科学计算等领域得到广泛应用。其中&#xff0c;倒序输出是Python编程中非常常见的操作。那么&#xff0c;如何在Python…

STM32F407 移植 FreeRTOS

0. 实验准备 本实验是基于正点原子 STM32F407ZG 探索者开发板完成的&#xff0c;所以需要一个STM32F407ZG 探索者开发板 用于移植的基础工程&#xff08;下面会讲&#xff09; FreeRTOS源码&#xff08;下面会讲&#xff09; 1. FreeRTOS移植 1.1 移植前准备 1.1.1 基础工程…