1题目
给你一个整数数组 nums
,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。
数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
示例 1:
输入:nums = [4,6,7,7] 输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]
示例 2:
输入:nums = [4,4,3,2,1] 输出:[[4,4]]
提示:
1 <= nums.length <= 15
-100 <= nums[i] <= 100
2链接
题目链接:491. 递增子序列 - 力扣(LeetCode)
视频链接:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili
3解题思路
在90.子集II (opens new window)中我们是通过排序,再加一个标记数组来达到去重的目的。
而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。
所以不能使用之前的去重逻辑!
以[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:
回溯三部曲:
1、确定函数参数及返回值
本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
2、确定终止条件
本题收集结果有所不同,题目要求递增子序列大小至少为2。
因为递增序列嘛,不可能是一个。只要大于等于2且没被剪枝的都要收集起来
if (path.size() > 1) {
result.push_back(path);
// 注意这里不要加return,因为要取树上的所有节点
}
3、确定单层递归逻辑
在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了
这里选择使用unordered_set去重,局部变量,仅记录本层的内容。
unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {
if ((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
unordered_set<int> uset;
是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!所以不需要pop()
4代码
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
if (path.size() > 1) {
result.push_back(path);
// 注意这里不要加return,要取树上的节点
}
unordered_set<int> uset; // 使用set对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {
if ((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
result.clear();
path.clear();
backtracking(nums, 0);
return result;
}
};