效果
⚠ 因为使用的是斜率来处理的垂直逻辑 tan,当为被除数为0时做了特殊处理,两点自由变换时到达零界点会有卡顿。
推导
开始复习初中二年级数学知识
斜率k的公式: k = ( y 1 − y 2 ) ( x 1 − x 2 ) k = \dfrac{(y_1 -y_2)}{(x_1 - x_2)} k=(x1−x2)(y1−y2)
两条垂直相交直线的斜率相乘积为-1: k 1 × k 2 = − 1 k_1 \times k_2 = -1 k1×k2=−1
如图已知
P
1
P_1
P1和
P
2
P_2
P2的坐标,以及d的值,求点
P
4
P_4
P4的坐标。 😂怀念初中算题的生活
⚠ 仅个人观点非正确答案
k 1 × k 2 = − 1 k_1 \times k_2 = -1 k1×k2=−1
设:
P
1
P
2
P_1P_2
P1P2的斜率为
k
1
k_1
k1
P
3
P
4
P_3P_4
P3P4的斜率为
k
2
k_2
k2
k
1
=
(
y
2
−
y
1
)
(
x
2
−
x
1
)
k_1 = \dfrac{(y_2 -y_1)}{(x_2 - x_1)}
k1=(x2−x1)(y2−y1)
k
2
=
(
y
4
−
y
3
)
(
x
4
−
x
3
)
k_2 = \dfrac{(y_4 -y_3)}{(x_4 - x_3)}
k2=(x4−x3)(y4−y3)
k 1 × ( y 4 − y 3 ) ( x 4 − x 3 ) = − 1 k_1 \times \dfrac{(y_4 -y_3)}{(x_4 - x_3)}=-1 k1×(x4−x3)(y4−y3)=−1
根据勾股定理可知
d = ( y 4 − y 3 ) 2 + ( x 4 − x 3 ) 2 d = \sqrt{(y_4 -y_3)^2 + (x_4 - x_3)^2} d=(y4−y3)2+(x4−x3)2
可知下列俩公式
( y 4 − y 3 ) = d 2 − ( x 4 − x 3 ) 2 (y_4 -y_3)=\sqrt{d^2 - (x_4 - x_3)^2} (y4−y3)=d2−(x4−x3)2
( y 4 − y 3 ) = − ( x 4 − x 3 ) k 1 (y_4 -y_3)=-\dfrac{ (x_4 - x_3)}{k_1} (y4−y3)=−k1(x4−x3)
合并继续推
d 2 − ( x 4 − x 3 ) 2 = − ( x 4 − x 3 ) k 1 \sqrt{d^2 - (x_4 - x_3)^2}=-\dfrac{ (x_4 - x_3)}{k_1} d2−(x4−x3)2=−k1(x4−x3)
d 2 − ( x 4 − x 3 ) 2 = ( x 4 − x 3 ) 2 k 1 2 d^2 - (x_4 - x_3)^2=\dfrac{ (x_4 - x_3)^2}{k_1^2} d2−(x4−x3)2=k12(x4−x3)2
( x 4 − x 3 ) 2 k 1 2 + ( x 4 − x 3 ) 2 = d 2 \dfrac{ (x_4 - x_3)^2}{k_1^2}+(x_4 - x_3)^2=d^2 k12(x4−x3)2+(x4−x3)2=d2
( x 4 − x 3 ) 2 × ( 1 k 1 2 + 1 ) = d 2 (x_4 - x_3)^2 \times (\dfrac{1}{k_1^2} + 1)=d^2 (x4−x3)2×(k121+1)=d2
( x 4 − x 3 ) 2 = d 2 1 k 1 2 + 1 (x_4 - x_3)^2 =\dfrac{d^2}{\dfrac{1}{k_1^2} + 1} (x4−x3)2=k121+1d2
可知
(
x
4
−
x
3
)
=
d
2
1
k
1
2
+
1
(x_4 - x_3)=\sqrt{\dfrac{d^2}{\dfrac{1}{k_1^2} + 1}}
(x4−x3)=k121+1d2
(
y
4
−
y
3
)
=
−
(
x
4
−
x
3
)
k
1
(y_4 - y_3)=-\dfrac{ (x_4 - x_3)}{k_1}
(y4−y3)=−k1(x4−x3)
代码
获取坐标点
将 x 4 x_4 x4和 y 4 y_4 y4套入公式中的 ( x 4 − x 3 ) (x_4 - x_3) (x4−x3)和 ( y 4 − y 3 ) (y_4 - y_3) (y4−y3)
// 已知 A⊥B 则 斜率 k1 * k2 = -1
// 因 k1 = (y2 - y1)/(x2 - x1)
// 所以 (y4 - y3)/(x4 - x3) = - (y2 - y1)/(x2 - x1)
let x1 = startX
let y1 = startY
let x2 = endX
let y2 = endY
let k = (y2 - y1) / (x2 - x1)
let y3 = (y1 + y2) / 2
let x3 = (x1 + x2) / 2
// 设 d 为箭头末端距离线的距离
let d = 20;
let x4 = 0
let y4 = 0
if (x1 == x2) x4 = Math.sign(redirect) * d;
else if (y1 == y2) y4 = Math.sign(redirect) * d;
else {
x4 = Math.sign(redirect) * Math.sqrt(Math.pow(d, 2) / (1 + Math.pow(1 / k, 2)))
y4 = - 1 / k * x4;
}
其中redirect
是指对应方向
绘制箭头
// 获得角度
let a = Math.atan2(y4, x4) * 180 / Math.PI
// 角度偏移值
a += 90
// 角度转弧度
let rd = a * Math.PI / 180
// 保存画布
ctx.save()
// 移动画布
ctx.translate(x4 + x3, y4 + y3)
// 旋转画布
ctx.rotate(rd)
// 绘制箭头
ctx.drawImage(arrowImage, -10, -20, 20, 22)
// 画布还原
ctx.rotate(-rd)
ctx.translate(-x4 - x3, -y4 - y3)
ctx.restore()
源码
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title> 画垂直线</title>
<style>
body {
text-align: center;
}
#line {
width: 600px;
height: 600px;
border: 1px solid #ddd;
margin: 20px auto;
}
</style>
</head>
<body>
<canvas id="line"></canvas>
<button id="changeRedirect">切换方向</button>
<script>
var arrow = ``
var arrowImage = new Image()
arrowImage.src = arrow;
var c = document.getElementById("line");
var b = document.getElementById('changeRedirect')
/** @type {CanvasRenderingContext2D} */
var ctx = c.getContext("2d");
c.width = c.clientWidth
c.height = c.clientHeight
var isDown = false;
var startX = 0;
var startY = 0;
var endX = 0;
var endY = 0
var lasttime = +new Date()
var timeoutId = null
var interval = 20
var redirect = 1;
function rendering() {
// 节流
// 不怎么会 仅供参考
if (+new Date() - lasttime < interval) {
if (!timeoutId)
timeoutId = setTimeout(() => {
rendering()
clearTimeout(timeoutId)
timeoutId = null
}, 100)
return;
}
lasttime = +new Date()
clearTimeout(timeoutId)
// 清理画布
ctx.clearRect(0, 0, c.clientWidth, c.clientHeight);
ctx.strokeStyle = "rgb(18,150,219)"
// 开始路径
ctx.beginPath();
// 移动点到开始位置
ctx.moveTo(startX, startY);
// 连接到结束点
ctx.lineTo(endX, endY);
// 结束
ctx.stroke();
// 已知 A⊥B 则 斜率 k1 * k2 = -1
// 因 k1 = (y2 - y1)/(x2 - x1)
// 所以 (y4 - y3)/(x4 - x3) = - (y2 - y1)/(x2 - x1)
let x1 = startX
let y1 = startY
let x2 = endX
let y2 = endY
let k = (y2 - y1) / (x2 - x1)
let y3 = (y1 + y2) / 2
let x3 = (x1 + x2) / 2
// 设 d 为箭头末端距离线的距离
let d = 20;
let x4 = 0
let y4 = 0
if (x1 == x2) x4 = Math.sign(redirect) * d;
else if (y1 == y2) y4 = Math.sign(redirect) * d;
else {
x4 = Math.sign(redirect) * Math.sqrt(Math.pow(d, 2) / (1 + Math.pow(1 / k, 2)))
y4 = - 1 / k * x4;
}
// 获得角度
let a = Math.atan2(y4, x4) * 180 / Math.PI
// 角度偏移值
a += 90
// 角度转弧度
let rd = a * Math.PI / 180
// 保存画布
ctx.save()
// 移动画布
ctx.translate(x4 + x3, y4 + y3)
// 旋转画布
ctx.rotate(rd)
// 绘制箭头
ctx.drawImage(arrowImage, -10, -20, 20, 22)
// 画布还原
ctx.rotate(-rd)
ctx.translate(-x4 - x3, -y4 - y3)
ctx.restore()
// 辅助线
// 开始路径
// ctx.beginPath();
// 移动点到开始位置
// ctx.moveTo(x3, y3);
// 连接到结束点
// ctx.lineTo(x4 + x3, y4 + y3);
// 结束
// ctx.stroke();
}
c.addEventListener('mousedown', (ev) => {
// console.log(ev);
isDown = true;
ctx.clearRect(0, 0, c.clientWidth, c.clientHeight);
startX = ev.offsetX;
startY = ev.offsetY;
endX = ev.offsetX;
endY = ev.offsetY
})
c.addEventListener('mousemove', (ev) => {
// console.log(ev);
if (!isDown) return;
endX = ev.offsetX;
endY = ev.offsetY;
rendering();
})
document.addEventListener('mouseup', (ev) => {
// console.log(ev);
isDown = false
})
b.addEventListener('click', (ev) => {
redirect *= -1;
rendering()
})
</script>
</body>
</html>