Python预测2022世界杯1/8决赛胜负

news2025/1/12 20:51:47

目录:

  • why to do?
  • how to do?


why to do?

简单介绍一下为什么要做这个吧? 首先呢, 最近一直在看基于tensorflow框架实现facenet等一些人脸识别的网络. 再加上昨天(2022年12月3日)是2022年世界杯1/8决赛第一个比赛日. 就在不同平台搜了一下, 看看有没有其他大牛也做了这方面的预测, 最后, 发现了几个博主做了相关分析.

但是他们做的时间比较久, 是在小组赛之前就做了, 所以, 和我想要的结果有些出入.

于是呢, 就将别人的项目进行了分析, 并根据kaggle给的一些足球历史比赛数据进行一个预测.

先将一些参考地址贴一下, 也感谢这些大牛的无私奉献, 祝大家可以学的更好~

  • https://www.kaggle.com/code/sslp23/predicting-fifa-2022-world-cup-with-ml/notebook#Conclusion
  • https://www.bilibili.com/video/BV1324y117jq/?spm_id_from=333.337.search-card.all.click
  • https://www.bilibili.com/read/cv19949591

how to do?

已有的数据集如下:

在这里插入图片描述

代码如下:

  • 导包:
import numpy as np
import pandas as pd
from operator import itemgetter
from save_res import save_res, save_res_draw
import time
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
  • 特征处理:
df =  pd.read_csv("./kaggle/results.csv")
df["date"] = pd.to_datetime(df["date"])
df.dropna(inplace=True)
df = df[(df["date"] >= "2018-8-1")].reset_index(drop=True)

rank = pd.read_csv("./kaggle/fifa_ranking-2022-10-06.csv")
rank["rank_date"] = pd.to_datetime(rank["rank_date"])
rank = rank[(rank["rank_date"] >= "2018-8-1")].reset_index(drop=True)
rank["country_full"] = rank["country_full"].str.replace("IR Iran", "Iran").str.replace("Korea Republic", "South Korea").str.replace("USA", "United States")
rank = rank.set_index(['rank_date']).groupby(['country_full'], group_keys=False).resample('D').first().fillna(method='ffill').reset_index()
df_wc_ranked = df.merge(rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], left_on=["date", "home_team"], right_on=["rank_date", "country_full"]).drop(["rank_date", "country_full"], axis=1)
df_wc_ranked = df_wc_ranked.merge(rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], left_on=["date", "away_team"], right_on=["rank_date", "country_full"], suffixes=("_home", "_away")).drop(["rank_date", "country_full"], axis=1)
df = df_wc_ranked
# print(df[(df_wc_ranked.home_team == "Brazil") | (df.away_team == "Brazil")].tail(10))
def result_finder(home, away):
    if home > away:
        return pd.Series([0, 3, 0])
    if home < away:
        return pd.Series([1, 0, 3])
    else:
        return pd.Series([2, 1, 1])


results = df.apply(lambda x: result_finder(x["home_score"], x["away_score"]), axis=1)
df[["result", "home_team_points", "away_team_points"]] = results
plt.figure(figsize=(15, 10))
sns.heatmap(df[["total_points_home", "rank_home", "total_points_away", "rank_away"]].corr())
plt.show()

在这里插入图片描述


df["rank_dif"] = df["rank_home"] - df["rank_away"]
df["sg"] = df["home_score"] - df["away_score"]
df["points_home_by_rank"] = df["home_team_points"]/df["rank_away"]
df["points_away_by_rank"] = df["away_team_points"]/df["rank_home"]

home_team = df[["date", "home_team", "home_score", "away_score", "rank_home", "rank_away","rank_change_home", "total_points_home", "result", "rank_dif", "points_home_by_rank", "home_team_points"]]

away_team = df[["date", "away_team", "away_score", "home_score", "rank_away", "rank_home","rank_change_away", "total_points_away", "result", "rank_dif", "points_away_by_rank", "away_team_points"]]

home_team.columns = [h.replace("home_", "").replace("_home", "").replace("away_", "suf_").replace("_away", "_suf") for h in home_team.columns]

away_team.columns = [a.replace("away_", "").replace("_away", "").replace("home_", "suf_").replace("_home", "_suf") for a in away_team.columns]

team_stats = home_team.append(away_team)#.sort_values("date")
team_stats_raw = team_stats.copy()

stats_val = []

for index, row in team_stats.iterrows():
    team = row["team"]
    date = row["date"]
    past_games = team_stats.loc[(team_stats["team"] == team) & (team_stats["date"] < date)].sort_values(by=['date'], ascending=False)
    last5 = past_games.head(5)
    
    goals = past_games["score"].mean()
    goals_l5 = last5["score"].mean()
    
    goals_suf = past_games["suf_score"].mean()
    goals_suf_l5 = last5["suf_score"].mean()
    
    rank = past_games["rank_suf"].mean()
    rank_l5 = last5["rank_suf"].mean()
    
    if len(last5) > 0:
        points = past_games["total_points"].values[0] - past_games["total_points"].values[-1]#qtd de pontos ganhos
        points_l5 = last5["total_points"].values[0] - last5["total_points"].values[-1] 
    else:
        points = 0
        points_l5 = 0
        
    gp = past_games["team_points"].mean()
    gp_l5 = last5["team_points"].mean()
    
    gp_rank = past_games["points_by_rank"].mean()
    gp_rank_l5 = last5["points_by_rank"].mean()
    
    stats_val.append([goals, goals_l5, goals_suf, goals_suf_l5, rank, rank_l5, points, points_l5, gp, gp_l5, gp_rank, gp_rank_l5])

stats_cols = ["goals_mean", "goals_mean_l5", "goals_suf_mean", "goals_suf_mean_l5", "rank_mean", "rank_mean_l5", "points_mean", "points_mean_l5", "game_points_mean", "game_points_mean_l5", "game_points_rank_mean", "game_points_rank_mean_l5"]

stats_df = pd.DataFrame(stats_val, columns=stats_cols)

full_df = pd.concat([team_stats.reset_index(drop=True), stats_df], axis=1, ignore_index=False)

home_team_stats = full_df.iloc[:int(full_df.shape[0]/2),:]
away_team_stats = full_df.iloc[int(full_df.shape[0]/2):,:]


home_team_stats = home_team_stats[home_team_stats.columns[-12:]]
away_team_stats = away_team_stats[away_team_stats.columns[-12:]]

home_team_stats.columns = ['home_'+str(col) for col in home_team_stats.columns]
away_team_stats.columns = ['away_'+str(col) for col in away_team_stats.columns]

match_stats = pd.concat([home_team_stats, away_team_stats.reset_index(drop=True)], axis=1, ignore_index=False)

full_df = pd.concat([df, match_stats.reset_index(drop=True)], axis=1, ignore_index=False)

def find_friendly(x):
    if x == "Friendly":
        return 1
    else: return 0

full_df["is_friendly"] = full_df["tournament"].apply(lambda x: find_friendly(x)) 

full_df = pd.get_dummies(full_df, columns=["is_friendly"])

base_df = full_df[["date", "home_team", "away_team", "rank_home", "rank_away","home_score", "away_score","result", "rank_dif", "rank_change_home", "rank_change_away", 'home_goals_mean',
       'home_goals_mean_l5', 'home_goals_suf_mean', 'home_goals_suf_mean_l5',
       'home_rank_mean', 'home_rank_mean_l5', 'home_points_mean',
       'home_points_mean_l5', 'away_goals_mean', 'away_goals_mean_l5',
       'away_goals_suf_mean', 'away_goals_suf_mean_l5', 'away_rank_mean',
       'away_rank_mean_l5', 'away_points_mean', 'away_points_mean_l5','home_game_points_mean', 'home_game_points_mean_l5',
       'home_game_points_rank_mean', 'home_game_points_rank_mean_l5','away_game_points_mean',
       'away_game_points_mean_l5', 'away_game_points_rank_mean',
       'away_game_points_rank_mean_l5',
       'is_friendly_0', 'is_friendly_1']]

base_df_no_fg = base_df.dropna()

df = base_df_no_fg

def no_draw(x):
    if x == 2:
        return 1
    else:
        return x
    
df["target"] = df["result"].apply(lambda x: no_draw(x))

def create_db(df):
    columns = ["home_team", "away_team", "target", "rank_dif", "home_goals_mean", "home_rank_mean", "away_goals_mean", "away_rank_mean", "home_rank_mean_l5", "away_rank_mean_l5", "home_goals_suf_mean", "away_goals_suf_mean", "home_goals_mean_l5", "away_goals_mean_l5", "home_goals_suf_mean_l5", "away_goals_suf_mean_l5", "home_game_points_rank_mean", "home_game_points_rank_mean_l5", "away_game_points_rank_mean", "away_game_points_rank_mean_l5","is_friendly_0", "is_friendly_1"]
    
    base = df.loc[:, columns]
    base.loc[:, "goals_dif"] = base["home_goals_mean"] - base["away_goals_mean"]
    base.loc[:, "goals_dif_l5"] = base["home_goals_mean_l5"] - base["away_goals_mean_l5"]
    base.loc[:, "goals_suf_dif"] = base["home_goals_suf_mean"] - base["away_goals_suf_mean"]
    base.loc[:, "goals_suf_dif_l5"] = base["home_goals_suf_mean_l5"] - base["away_goals_suf_mean_l5"]
    base.loc[:, "goals_per_ranking_dif"] = (base["home_goals_mean"] / base["home_rank_mean"]) - (base["away_goals_mean"] / base["away_rank_mean"])
    base.loc[:, "dif_rank_agst"] = base["home_rank_mean"] - base["away_rank_mean"]
    base.loc[:, "dif_rank_agst_l5"] = base["home_rank_mean_l5"] - base["away_rank_mean_l5"]
    base.loc[:, "dif_points_rank"] = base["home_game_points_rank_mean"] - base["away_game_points_rank_mean"]
    base.loc[:, "dif_points_rank_l5"] = base["home_game_points_rank_mean_l5"] - base["away_game_points_rank_mean_l5"]
    
    model_df = base[["home_team", "away_team", "target", "rank_dif", "goals_dif", "goals_dif_l5", "goals_suf_dif", "goals_suf_dif_l5", "goals_per_ranking_dif", "dif_rank_agst", "dif_rank_agst_l5", "dif_points_rank", "dif_points_rank_l5", "is_friendly_0", "is_friendly_1"]]
    return model_df

model_db = create_db(df)

X = model_db.iloc[:, 3:]
y = model_db[["target"]]




X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state=1)

gb = GradientBoostingClassifier(random_state=5)

params = {"learning_rate": [0.01, 0.1, 0.5],
            "min_samples_split": [5, 10],
            "min_samples_leaf": [3, 5],
            "max_depth":[3,5,10],
            "max_features":["sqrt"],
            "n_estimators":[100, 200]
         } 

gb_cv = GridSearchCV(gb, params, cv = 3, n_jobs = -1, verbose = False)

gb_cv.fit(X_train.values, np.ravel(y_train))

gb = gb_cv.best_estimator_

params_rf = {"max_depth": [20],
                "min_samples_split": [10],
                "max_leaf_nodes": [175],
                "min_samples_leaf": [5],
                "n_estimators": [250],
                 "max_features": ["sqrt"],
                }

rf = RandomForestClassifier(random_state=1)

rf_cv = GridSearchCV(rf, params_rf, cv = 3, n_jobs = -1, verbose = False)

rf_cv.fit(X_train.values, np.ravel(y_train))

rf = rf_cv.best_estimator_

  • 开始做比赛胜负的准备:
with open("country_name.txt", "r", encoding="utf-8") as f:
    info = f.readlines()
    info = list(map(lambda x:x.strip(), info))

English_name = info[:32]
Chinese_name = info[32:]

country_name = {}

for each in zip(English_name, Chinese_name):
    country_name[each[0]] = each[1]
  • 因为这里是预测了小组赛, 从而设置了如下变量, 因我后期不是预测小组赛结果, 所以把相应的变量放在这, 需要研究的可以看一下
table = {'A': [['Qatar', 0, []],
  ['Ecuador', 0, []],
  ['Senegal', 0, []],
  ['Netherlands', 0, []]],
 'B': [['England', 0, []],
  ['Iran', 0, []],
  ['United States', 0, []],
  ['Wales', 0, []]],
 'C': [['Argentina', 0, []],
  ['Saudi Arabia', 0, []],
  ['Mexico', 0, []],
  ['Poland', 0, []]],
 'D': [['France', 0, []],
  ['Australia', 0, []],
  ['Denmark', 0, []],
  ['Tunisia', 0, []]],
 'E': [['Spain', 0, []],
  ['Costa Rica', 0, []],
  ['Germany', 0, []],
  ['Japan', 0, []]],
 'F': [['Belgium', 0, []],
  ['Canada', 0, []],
  ['Morocco', 0, []],
  ['Croatia', 0, []]],
 'G': [['Brazil', 0, []],
  ['Serbia', 0, []],
  ['Switzerland', 0, []],
  ['Cameroon', 0, []]],
 'H': [['Portugal', 0, []],
  ['Ghana', 0, []],
  ['Uruguay', 0, []],
  ['South Korea', 0, []]]}
groups = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
group_count = 7
matches = [('A', 'Qatar', 'Ecuador'),
 ('A', 'Senegal', 'Netherlands'),
 ('A', 'Qatar', 'Senegal'),
 ('A', 'Netherlands', 'Ecuador'),
 ('A', 'Ecuador', 'Senegal'),
 ('A', 'Netherlands', 'Qatar'),
 ('B', 'England', 'Iran'),
 ('B', 'United States', 'Wales'),
 ('B', 'Wales', 'Iran'),
 ('B', 'England', 'United States'),
 ('B', 'Wales', 'England'),
 ('B', 'Iran', 'United States'),
 ('C', 'Argentina', 'Saudi Arabia'),
 ('C', 'Mexico', 'Poland'),
 ('C', 'Poland', 'Saudi Arabia'),
 ('C', 'Argentina', 'Mexico'),
 ('C', 'Poland', 'Argentina'),
 ('C', 'Saudi Arabia', 'Mexico'),
 ('D', 'Denmark', 'Tunisia'),
 ('D', 'France', 'Australia'),
 ('D', 'Tunisia', 'Australia'),
 ('D', 'France', 'Denmark'),
 ('D', 'Australia', 'Denmark'),
 ('D', 'Tunisia', 'France'),
 ('E', 'Germany', 'Japan'),
 ('E', 'Spain', 'Costa Rica'),
 ('E', 'Japan', 'Costa Rica'),
 ('E', 'Spain', 'Germany'),
 ('E', 'Japan', 'Spain'),
 ('E', 'Costa Rica', 'Germany'),
 ('F', 'Morocco', 'Croatia'),
 ('F', 'Belgium', 'Canada'),
 ('F', 'Belgium', 'Morocco'),
 ('F', 'Croatia', 'Canada'),
 ('F', 'Croatia', 'Belgium'),
 ('F', 'Canada', 'Morocco'),
 ('G', 'Switzerland', 'Cameroon'),
 ('G', 'Brazil', 'Serbia'),
 ('G', 'Cameroon', 'Serbia'),
 ('G', 'Brazil', 'Switzerland'),
 ('G', 'Serbia', 'Switzerland'),
 ('G', 'Cameroon', 'Brazil'),
 ('H', 'Uruguay', 'South Korea'),
 ('H', 'Portugal', 'Ghana'),
 ('H', 'South Korea', 'Ghana'),
 ('H', 'Portugal', 'Uruguay'),
 ('H', 'Ghana', 'Uruguay'),
 ('H', 'South Korea', 'Portugal')]
  • 对预测最关键的两个函数如下设置:
def find_stats(team_1):
#team_1 = "Qatar"
    past_games = team_stats_raw[(team_stats_raw["team"] == team_1)].sort_values("date")
    last5 = team_stats_raw[(team_stats_raw["team"] == team_1)].sort_values("date").tail(5)

    team_1_rank = past_games["rank"].values[-1]
    team_1_goals = past_games.score.mean()
    team_1_goals_l5 = last5.score.mean()
    team_1_goals_suf = past_games.suf_score.mean()
    team_1_goals_suf_l5 = last5.suf_score.mean()
    team_1_rank_suf = past_games.rank_suf.mean()
    team_1_rank_suf_l5 = last5.rank_suf.mean()
    team_1_gp_rank = past_games.points_by_rank.mean()
    team_1_gp_rank_l5 = last5.points_by_rank.mean()

    return [team_1_rank, team_1_goals, team_1_goals_l5, team_1_goals_suf, team_1_goals_suf_l5, team_1_rank_suf, team_1_rank_suf_l5, team_1_gp_rank, team_1_gp_rank_l5]
def find_features(team_1, team_2):
    rank_dif = team_1[0] - team_2[0]
    goals_dif = team_1[1] - team_2[1]
    goals_dif_l5 = team_1[2] - team_2[2]
    goals_suf_dif = team_1[3] - team_2[3]
    goals_suf_dif_l5 = team_1[4] - team_2[4]
    goals_per_ranking_dif = (team_1[1]/team_1[5]) - (team_2[1]/team_2[5])
    dif_rank_agst = team_1[5] - team_2[5]
    dif_rank_agst_l5 = team_1[6] - team_2[6]
    dif_gp_rank = team_1[7] - team_2[7]
    dif_gp_rank_l5 = team_1[8] - team_2[8]
    
    return [rank_dif, goals_dif, goals_dif_l5, goals_suf_dif, goals_suf_dif_l5, goals_per_ranking_dif, dif_rank_agst, dif_rank_agst_l5, dif_gp_rank, dif_gp_rank_l5, 1, 0]

因为昨晚两场是荷兰vs美国, 阿根廷vs澳大利亚. 所以, 代码如下设置

# 这里需要引入一个博主编写的一个可视化的py文件, 详细信息可以去看引用路径
import save_res 

teams = ['Netherlands', 'United States']
#     # 阿根廷: Argentina 
#     # 澳大利亚: Australia 
# teams = ['Argentina', 'Australia']  # 当预测下一场的话, 需要用到这句

team_1 = find_stats(teams[0])
team_2 = find_stats(teams[1])

features_g1 = find_features(team_1, team_2)
features_g2 = find_features(team_2, team_1)

probs_g1 = gb.predict_proba([features_g1])
probs_g2 = gb.predict_proba([features_g2])

team_1_prob_g1 = probs_g1[0][0]
team_1_prob_g2 = probs_g2[0][1]
team_2_prob_g1 = probs_g1[0][1]
team_2_prob_g2 = probs_g2[0][0]

team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2

prob = 0
if team_1_prob >= team_2_prob: 
    prob = team_1_prob
else: 
    prob = team_2_prob

win_group = ''
if team_1_prob >= team_2_prob: 
    win_group = teams[0]
else: 
    win_group = teams[1]

prob = round(prob, 5) 

save_res.save_res(teams[0], teams[1], win_group, prob, "tmp1.png")
  • 结果:

1/8决赛 - 荷兰vs美国:

在这里插入图片描述
1/8决赛 - 阿根廷vs澳大利亚:

在这里插入图片描述
这里, 那也把今天的两场比赛进行一下预测吧~

1/8决赛 - 法国vs波兰:

在这里插入图片描述
1/8决赛 - 英格兰vs塞内加尔:

在这里插入图片描述
就写到这吧, 就图一乐, 这模型可以优化, 毕竟随机森林的效果还不是很好, 而且这个模型也没考虑各种比较现实的因素, 亲情球呀, 快乐球呀, 单纯不想赢呀, 等等.

各位看官, 就图一乐即可~

如果自己想研究的话, 可以去那几位大佬的文章帖子去学习一下~

本篇文章, 仅供学习和娱乐~


再贴一下参考链接:

  • https://www.kaggle.com/code/sslp23/predicting-fifa-2022-world-cup-with-ml/notebook#Conclusion
  • https://www.bilibili.com/video/BV1324y117jq/?spm_id_from=333.337.search-card.all.click
  • https://www.bilibili.com/read/cv19949591

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/60213.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

设计模式——策略模式

设计模式中的复用性指的是编译单位&#xff08;二进制层面&#xff09;的复用性&#xff08;编译、测试、部署后是原封不动的&#xff09; 动机&#xff08;Motivation&#xff09; 在软件构建过程中&#xff0c;某些对象使用的算法可能多种多样&#xff0c;经常改变&#xf…

Netty系列(五):源码解读ServerBootstrapAcceptor类职能,探究Netty启动流程

ServerBootstrapAcceptor是Netty服务端用来接收客户端连接的核心类&#xff0c;本文将介绍ServerBootstrapAcceptor的职能。 init方法 在上一篇文章源码解读 backlog 参数作用中我们知道&#xff0c;在Netty服务端启动时&#xff0c;会调用ServerBootstrap.bind()绑定本地端口…

玩转GDAL一文带你深入Windows下FileGDB驱动支持

前言 了解GDAL的朋友一定知道&#xff0c;GDAL3.5以下&#xff08;含&#xff09;默认配置下是只支持gdb文件的读的&#xff0c;是不支持写的。更要命的是&#xff0c;默认的OpenFileGDB在读取时&#xff0c;如果我们在矢量文件中设置了属性表字段的别名&#xff0c;默认驱动是…

Git项目演练

Git项目演练 首先&#xff0c;进入到项目路径 然后&#xff0c;初始化&#xff0c;产生.git库 创建gitignore文件 将不需要的文件放入到,gitignore 将所有的文件添加到追踪的状态 对文件进行一次提交 使用git log查看变动 使用编译器修改代码中的内容 对修改进…

基于javaweb的学籍管理系统计算机毕业论文java毕业设计选题源代码

&#x1f496;&#x1f496;更多项目资源&#xff0c;最下方联系我们✨✨✨✨✨✨ 目录 Java项目介绍 资料获取 Java项目介绍 计算机毕业设计java毕设之基于javaweb的学籍管理系统-IT实战营_哔哩哔哩_bilibili项目资料网址: http://itzygogogo.com软件下载地址:http://itzy…

【能效管理】安科瑞新能源充电桩收费运维管理云平台应用分析

概述 AcrelCloud-9000安科瑞充电桩收费运营云平台系统通过物联网技术对接入系统的汽车充电站、电动自行车充电站以及各个充电桩进行不间断地数据采集和监控&#xff0c;实时监控充电桩运行状态&#xff0c;进行充电服务、支付管理&#xff0c;交易结算&#xff0c;资源管理、电…

ADSP-21569/ADSP-21593的开发入门(上)

作者的话 ADI的SHARC系列DSP&#xff0c;目前已经出到5系列了&#xff0c;最新的一颗叫2159x&#xff0c;按照ADI的说法&#xff0c;这颗DSP的性能是21569的两倍&#xff0c;但又能和21569做P2P的替换&#xff0c;所以下面我们就以21593为例&#xff0c;写一点资料&#xff0c…

头歌计算机组成原理MIPS RAM设计

完整答案点击底部 <?xml version"1.0" encoding"UTF-8" standalone"no"?> <project source"2.15.0.2.exe" version"1.0"> This file is intended to be loaded by Logisim http://logisim.altervista.org &l…

数字化门店| 旧衣回收店系统 | 智慧门店小程序开发教程

随着人们生活质量的提升&#xff0c;无论男女&#xff0c;衣柜鞋柜里摆满了各种衣物&#xff0c;覆盖了多个场景下的衣物非常多&#xff0c;同时如今大多数人已经不再穿补丁衣服&#xff0c;旧或破就会扔掉买新的。为了节省资源及合理二次利用&#xff0c;旧衣回收行业逐渐出现…

用译码器来设计组合逻辑电路

三线到八线&#xff1a;输入端只有三个所以只能是三变量 我们先来看书上的一个例子 设计的过程第一步 将函数表达式整理成最小项和的形式 我们用来举例&#xff0c;不是最小项的形式 三变量函数可以用三变量的最小项来表示 为了看的更清楚&#xff0c;我们写成最小项的编号&…

四、Git本地仓库基本操作——查看提交历史和版本回退前进

1. 查看提交历史 查看git提交历史一般常用两个命令&#xff1a; # 查看历史提交记录 git log # 以列表形式查看指定文件的历史记录 git blame <文件名>git log 该命令会按照我们提交的时间线&#xff0c;然后列出所有的历史提交。 示例&#xff1a; git log 显示的…

[附源码]计算机毕业设计JAVA医疗预约系统

[附源码]计算机毕业设计JAVA医疗预约系统 项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis M…

【Pytorch】广播机制

【参考&#xff1a;The size of tensor a must match the size of tensor b (y) at non-singleton dimension z_点PY的博客-CSDN博客】 报错&#xff1a;The size of tensor a (x) must match the size of tensor b (y) at non-singleton dimension z 其广播机制遵循以下规则…

[附源码]计算机毕业设计基于springboot的连锁药店销售管理系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

mediasoup学习与实践

一、mediasoup基本概念&#xff1a; 基础架构 1、worker 2、router 3、producer 4、consumer 5、transport 整体结构 特性 1、支持IPv6 2、ICE/DRLS/RTP/RTCP over UDP and TCP 3、支持simulcast和svc 4、支持拥塞控制 5、带宽控制 6、支持&#xff1a;STCP 7、多流使用同一…

安全可靠的SRT实时传输协议

Secure Reliable Transport(SRT)是安全、可靠、低延时的多媒体实时传输协议。SRT协议使用AES进行数据加密&#xff0c;运用FEC进行前向纠错&#xff0c;并且有流量控制、拥塞控制。类似于QUIC协议&#xff0c;SRT采用UDP代替TCP&#xff0c;在应用层提供发送确认机制、ARQ自动重…

ArcGIS基础:点要素分割线要素和提取线要素的交点

第一个实验&#xff1a;【点要素分割线要素】 看下原始数据&#xff1a;下图所示&#xff0c;&#xff12;个红点和一条绿线&#xff0c;用&#xff12;个点去分割这条线。 找到【数据管理工具】&#xff0c;在找到【要素】&#xff0c;再找到【在点处分割线】&#xff0c;如…

【云原生 | Kubernetes 实战】07、Pod 高级实战:Pod 生命周期、启动钩子、停止钩子

目录 一、Pod 生命周期 1.1 pod 生命周期的重要行为 二、初始化容器最佳实战 2.1 Init 容器 2.2 初始化容器使用案例 2.3 初始化容器生产应用 三、主容器 3.1 容器钩子 3.2 演示 postStart 和 preStop 用法 总结 一、Pod 生命周期 pod从开始创建到终止退出的时间…

51单片机自学报告--实验部分

微机接口技术-自主学习笔记 PPT链接&#xff1a;微机接口自学--51单片机自学汇报PPT_猫猫爱吃小鱼的博客-CSDN博客 效果演示gif: 四、Proteus仿真 仿真环境&#xff1a;电路仿真软件: Proteus HEX可执行文件编写软件: keil uVision4 keil uVision4新…

设计模式——模板方法

GOF-23 模式分类 从目的来看&#xff1a; • 创建型&#xff08;Creational&#xff09;模式&#xff1a;将对象的部分创建工作延迟到子类或者其他对象&#xff0c;从而应对需求变化为对象创建时具体类型实 现引来的冲击。 • 结构型&#xff08;Structural&#xff09;模式&a…