LEAP模型(能源环境发展、碳排放建模预测及不确定性分析)

news2024/11/22 13:22:20

 在国家“3060”碳达峰碳中和的政策背景下,如何寻求经济-能源-环境的平衡有效发展是国家、省份、城市及园区等不同级别经济体的重要课题。根据国家政策、当地能源结构、能源技术发展水平以及相关碳排放指标制定合理有效的低碳能源发展规划需要以科学准确的能源环境发展预测模型为支撑,定量预估节能减排等政策效果。

  采用部门分析法建立的LEAP(Long Range Energy Alternatives Planning System/ Low emission analysis platform,长期能源可替代规划模型)是一种自下而上的能源-环境核算工具,由斯德哥尔摩环境研究所和美国波士顿大学联合研发。该模型与情景分析法紧密结合,可用于预测不同发展条件下中长期能源供应、能源供应转换、能源终端需求及污染气体排放(温室气体CO2等),综合考虑人口、经济发展、交通运输周转量、技术、价格等因素对能源-环境发展的影响。

   LEAP模型允许研究者根据研究目的、数据可获取度、研究对象特点等灵活构建模型结构,十分适用于能源数据不全面情况,现已广泛应用于国家、区域、部门、行业的能源战略研究中。掌握该模型不仅有助于高校及科研院所工作人员从事能源系统评价诊断、低碳节能发展技术研判等能源系统工程相关工作,也可为政府决策提供技术支持。特别是可应用于风光储、氢能一体化利用策略在全社会能源供应系统中的作用、电动汽车对终端能源需求及碳排放的影响等热点问题。

点击查看原文

LEAP软件操作基础流程

掌握不同能源系统数据核算及能源现状评价

掌握应用多种数据处理方法以测算模型输入数据预测年内变化情况

掌握LEAP软件构建基本的能源需求及供应分析模型

掌握LEAP软件构建细化的能源需求情景分析模型

掌握LEAP软件对情景进行成本效益分析、对非能源活动的温室气体排放进行分析

掌握LEAP软件构建交通部门减排模型

掌握LEAP软件预测结果不确定分析

导师:陈博士:来自重点高校及科研院所一线科研人员,长期从事城市能源需求预测及可再生能源统建模仿真工作,主要参与编写市级能源发展规划多项,发表科研论文多篇,精通能源系统模型及多种数据预测方法,具有丰富的能源需求及碳排放预测经验。

本文的特色在于以国内典型能源输入型省份、城市为例,深入浅出的介绍不同级别对象时根据数据结构构建合适的能源生产、转换、消费及碳排放预测模型,根据研究目的合理设计情景以量化不同低碳化能源发展政策效果,并采用蒙特卡洛法进行了预测结果的不确定性分析。结合软件自带例子,对关键部门及重点关注技术,如工业能源消耗、交通部门碳排放、新能源发电系统及发电成本最优化等,也进行了重点解析示范。

第二章、基于LEAP模型的能源需求预测模型构建

2.1 结合情景分析法的基本能源需求预测模型构建

2.1.1 需求模块主要功能和计算方法

2.1.2 案例描述及基本参数设置:标准单位(标吨煤、净现值)、基年、基期、参考情景等

2.1.3 需求侧模型构建

- 需求树形图绘制

- 基年账户数据录入:城镇居民及农村家庭能源消费数据(家庭数及各能源品种消费强度)

2.1.4 参考情景创建及结果分析

- 参考情景创建:预测年内人口结构及能源消费强度变化率

- 以图表方式查看结果

2.1.5 节能政策效果量化:高效照明及冰箱

- 创建节能情景,输入各节能措施下能源强度的预测年内变化率

- 查看结果并与参考情景结果比较

2.2 不同部门、情景下的细化需求侧模型构建

2.2.1 细化需求侧部门模型:工业、交通及商业建筑

2.2.2 工业

- 细化为能源密集型产业(钢铁和制浆造纸)和其他所有行业

- 基年账户数据录入:活动水平(产值或产量)、活动强度(过程热、电力、油气煤等化石能源消耗强度)

- 参考情景创建:使用Time Series Wizard设置各参数预测年变化情况

- 结果查看及分析

2.2.3 交通部门

- 细化为客运交通(小汽车、公共汽车及铁路)及货运交通(公路货运及铁路货运)

- 基年账户数据录入:活动水平(周转量、运输里程)、活动强度(单位里程耗油量、能源强度)

- 参考情景创建:周转量、轿车占比以及人均货运需求增长率、能源效率提高率

- 结果查看及分析

2.2.4 商业建筑

- 细化为多种燃料和技术下的采暖、制冷、供电等有效能源分析

- 基年账户数据录入:活动水平(建筑面积)、活动强度(终端能源消费等价热值、供热技术效率)、燃料消费比例等

- 参考情景创建:建筑面积、能源强度及供热技术效率变化率

- 结果查看及分析

2.2.5 总体能源需求分析

- 分部门、子部门、能源品种、年份、情景下能源需求预测

       

第三章、基于LEAP模型的能源供应预测模型构建

 

3.1 结合情景分析法的基本能源供应预测模型构建

3.1.1 能源供应转换模块主要功能及计算方法

3.1.2 基础供应侧模型构建及参数设置

- 能源输入、转化模型框架图绘制

- 基年账户数据录入:发电、输配电、天然气输配等模块设置

- 电网供电稳定性、电力调度原则、电网负荷变化、不同发电技术特征等参数设置

3.1.3参考情景创建及结果分析

- 参考情景创建:电厂建设、发电效率、能源运输效率等年度变化情况

- 重点关注各发电形式间的调度原则

- 查看各发电方式电力贡献率等结果

3.1.4 能源流动情况诊断

- 基于能源流动图分析该案例能源供应及消费平衡情况

- 研判参考情景下能源发展态势

3.1.5 能源供应侧节能措施效果量化

- 节能政策:输配电损失减少、电力系统负荷系数改进

3.2 不同能源品种、情景下的细化供应侧模型构建

3.2.1 细化能源转换模型:木炭生产、电力、炼油和煤炭开采

3.2.2 木炭生产

模拟单能源品种输入单能源品种产出的能源转换流程

- 建立标准模块:木炭产量、不同技术转换效率(技术替代)

3.2.3 电力生产

模拟多能源品种输入单能源品种产出的能源转换流程

- 调整发电系统容量以配合电量需求:水电、煤电、燃油发电

- 新能源发电新增容量规划

3.2.4 炼油

模拟单能源品种输入多能源品种产出的能源转换流程

- 炼油厂效率、产品种类及各产品产量

3.2.5 煤炭开采

模拟本地能源开采

- 煤炭开采能力、煤矿厂效率

3.2.6 资源情况

模拟不同能源品种的本地生产、调入调出情况

- 区分生产资源、进口资源

- 区分化石燃料储备、可再生能源产量

3.2.7 逐年、逐情景能源系统图、能源平衡表分析比较

        

第四章、基于LEAP模型的温室气体及其他空气污染物排放预测模型构建

4.1 结合情景分析法的基本排放预测模型构建

4.1.1 排放模块主要功能和计算方法

4.1.2 温室气体及其他空气污染物排放模型构建

- 明确污染物类型和污染物来源:能源及非能源过程(工业过程、碳汇等)

- 污染物排放因子录入及TED数据库使用及编辑

- 基于能源供应及消费模块的构建,链接IPCC排放因子库或者自行添加排放因子,可采用多种方法定义排放因子

4.1.3 参考情景构建及结果分析

- 查看参考情景下各大气污染物预测结果

4.1.4 节能政策情景构建

- 查看节能政策对各大气污染物排放的影响

4.2 结合情景分析法的非能源来源排放预测模型构建

4.2.1 非能源来源排放类型

- 工业流程和产品使用、农业林业其他土地使用、废弃物

4.2.2 案例整体描述及基础参数设置

4.2.3 模型构建及基年账户数据录入

- 制冷空调行业排放HFC

- 与EXCEL链接,直接输入排放因子逐年值

- 粪便管理中产生的甲烷、一氧化二氮

- 设定自定义变量,实现基于不同活动水平的排放因子

4.2.4 基础情景设置

- 非能源来源排放活动水平及排放强度设置

- 全球变暖潜力值等结果比较

4.2.5 沼气发电情景设置

- 发电模块中设置沼气发电技术参数

- 非能源排放部门对应减排量设置

        

 

第五章、基于LEAP模型的能源需求及碳排放预测实例示范

5.1 基于LEAP的典型能源输入型城市能源需求预测实例操作

5.1.1数据搜集及模型结构划分

- 根据数据可获得性,基于经济和能源统计表将模型划分如下,综合考虑宏观经济社会发展、能源环境政策及能源技术水平的影响。

5.1.2 基年能流图绘制

图5 某市基年能源流动图

5.1.3 情景设置

- 结合平均增长率法、计量经济学模型(ARIMA模型等)、人口预测模型(Leslie模型)等方法,考虑不同政策设置多种情景:

- 基础情景:能源需求在过去的基础上自然发展(BS)

- 不同经济增速情景:高、低经济增长速度(HGDP、LGDP)

- 不同产业结构情景:高、低第二产业占比(HIS、LIS)

- 节能情景:技术进步及设备升级引起的能源强度降低(ES)

- 综合情景:综合考察GDP增速、第二产业占比及能源强度变化(MBS、MSS)

5.1.4 结果对比

- 定量分析GDP增速、产业结构及节能目标对该市能源需求的影响

- 重点部门节能政策效果量化

- 能源发展情况研判及政策建议

  

5.1.5 预测结果不确定性分析

- 基于蒙特卡洛法,采用与EXCEL链接的水晶球软件,操作简单

- 构建函数,确定估计变量和需求参数

- 确定参数的概率分布,包括正态分布、对数正态分布等

- 分析指定情景、指定年份下的能源需求总量分布曲线及不确定性敏感性分析 

 

5.2 基于GREAT模型的省市一级能源政策分析和排放评估示例

5.2.1 基于GREAT模型的能源需求模块构建

- 生活用能:城市、农村;电力、天然气等;照明、家电用电

- 商业用能

- 交通用能

- 工业用能:钢铁、水泥、铝工业、造纸业、玻璃工业等

- 农业用能

5.2.2 基于GREAT模型的能源转换模块构建

- 输配电

- 热力生产和供应

- 发电

- 石油开采

- 焦化

- 天然气开采

- 煤炭开采

5.2.3 控制变量设置

- 生活电耗强度指数

- 工业电耗强度指数

- 农业燃料消耗强度指数等

5.2.4 基于GREAT模型的排放模块构建

- 电力间接排放或直接排放计算等

5.2.5 情景设计及结果分析

5.3 LEAP用于碳达峰预测注意事项

5.3.1 省级温室气体排放编制指南解读

5.3.2 省级温室气体排放排放部门划分与能源消费统计的区别

5.3.3 排放因子和折标煤系数统一

5.3.4 碳排放强度、减排空间、非化石能源占比等指标设定

第六章、LEAP模型成本效益分析专

6.1基于LEAP模型的成本效益分析简介

6.1.1 成本计算方法和分类

- 预测年限内需求、转换、一次能源及输入能源、外部环境中所有成本

- 能源需求的资本成本、运行和维护成本,能源节约的成本

- 能源转换资本成本、固定成本、运行及维护成本

- 本土资源的成本

- 进、出口燃料的成本

- 污染物排放的外部成本

- 用户自定义成本等

6.1.2 成本计算系统边界和经济参数含义

- 需求侧、部分能源系统和整体能源系统

- 贴现率、燃料成本、设备投资成本、能源效率提升成本等经济参数

6.2 示例整体描述

6.2.1成本数据参数输入和模型设置

- 技术渗透

- 技术性能

- 技术成本

6.2.3 政策情景创建

- 高效照明

- 节能冰箱

- 压缩天然气公交车

- 天然气和可再生能源

- 工业效率提升

6.2.4 成本效益结果分析

- 成本效益分析表

- 不同情景下节能减排净现值

- 边际减排曲线

第七章、 LEAP模型交通运输及碳排放

7.1 基于库存周转率法的交通部门建模

7.1.1 库存周转率法含义及使用

- 销售量

- 库存量

7.1.2 车辆性能随车龄分布曲线设定

- 行驶里程数

- 能源效率

- 排放因子

7.2 示例整体描述

7.2.1 模型构建及基本设置

- 模型架构设置

- 轿车、运动多功能车(SUV)数量(分为柴油车、汽油车、混合动力车及电动车)

 

7.2.2 基年账户车辆参数输入

- 车辆年龄及库存销售量函数关系

- 车辆耗油量及耗油量与车辆年龄关系

- 车辆行驶里程数

7.2.3 基年账户排放因子录入

- 二氧化碳、氮氧化物、一氧化碳及可吸入颗粒

- 根据各车型输入其排放因子

7.2.4 参考情景设置(BAU)

- 无新政策减少燃料使用及排放

- 预测年内各参数变化率

7.2.5 政策情景设置

- 燃油经济性提高(Improved fuel economy)

- 混合动力电动汽车、电动汽车市场占有率提升(Hybrid)

- 柴油轿车和柴油SUV车市场占有率提升(Diesel)

- 新尾气排放标准(Tailpipe Emissions Standard)

- 轿车推广力度高于SUV(Fewer SUVS)

- 组合情景(Combined)

7.2.6 结果分析

 

第八章、LEAP模型电力系统优化

8.1 LEAP优化模块基本原理

- 优化方法的分类和简介

- NEMO和Julia平台的使用和介绍

8.2以发电成本最小化为目标的发电模块优化示例

- 可用于新能源装机配置和电网调度研究

8.2.1多种发电技术特性数据

- 成本

- 装机容量

- 系统负荷曲线

- 规划储备余额

- 效率

- 各技术排放因子

8.2.2 导入小时负载数据建立载模型

- 时间片段

- 每小时的点子表格数据(EXCEL)

- 年度变化

- 系统能源负荷曲线

8.2.3 情景设置

- 仅天然气发电

- 仅核能发电

- 仅水力发电

- 仅风能发电

- 仅光伏光热发电

- 仅燃煤发电

8.2.4 单独发电模式情景结果查看

- 社会成本

- 规划装机容量

- 温室气体排放量等外部价值

8.2.5 最小发电成本优化配置情景

- 使用NEMO进行优化

- 得到优化的发电技术组合和调度分配情况

- 选择优化变量及优化情景

    

8.3 储能模块构建

- NEMO框架储能模块的使用

- 优化储能模块大小及储放时间

8.4 约束条件下的最低发电成本优化模型

- 建立排放约束

- 建立最低可再生能源利用率约束

- 寻找在约束条件下最低发电成本情景

点击查看原文

推荐阅读:

建筑设计全过程碳排放计算与案例分析

“双碳”目标下资源环境中的可计算一般均衡(CGE)模型实践技术应用   ——— 基于R语言的建模

基于R语言的DICE模型实践技术应用

基于通用优化软件GAMS的数学建模和优化分析

基于“遥感+”蓝碳储量估算、红树林信息提取实践技术应用与科研论文写作

环境影响与碳排放生命周期评估应用及案例分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/600428.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在金融数据里挖呀挖,GaussDB开出了花

北京是首都,上海是魔都,那深圳是什么?如果在网上问这个问题,网友会告诉你,深圳是“搞钱之都”。 金融在深圳扮演着关键角色,金融产业的配套数字化基础设施地位也自然也非常重要。深圳的银行、券商等金融机构…

(2)NUC980 Uboot制作

目录: (1)NUC980 编译环境搭建 (2)NUC980 Uboot制作 (3)NUC 980 kenerl编译 u-boot: (1)下载u-boot: A:下载连接: 下载地址:https://gitee.com/OpenNuvoton/NUC970_U-Boot_v2016.11 文件:NUC97…

分布式存储ceph

ceph架构,三个默认接口(块存储RBD,文件存储cephFS,对象存储RGW) LibRADOS对象访问接口 RADOS基础存储系统(统一存储池) #最底层 ceph架构 osd,负责存储数据,一般一个…

27.hadoop系列之50G数据清洗入库秒查询实践

1. 项目背景 目前本地有50G的企业年报csv数据, 需要清洗出通信地址,并需要与原有的亿条数据合并以供业务查询最新的企业通信地址 2. 技术选型 Hadoop ClickHouse 3. Hadoop数据清洗 我们50G的数据无须上传至集群处理,上传目前带宽2M/S, 巨慢&#x…

【shiro】shiro整合JWT——1.需要创建的类

前言 shiro整合JWT系列,主要记录核心思路–如何在shiroredis整合JWTToken。 该篇主要讲述整合JWT需要创建那些类,如下: JwtToken (JWT实体类)JwtUtil (JWT工具类)JwtFilter (JWT拦…

IIS日志分析

一、下载IIS日志分析软件 地址如下: 开放网盘: 寄存一些分享出来的文件之类的东西 其中就是LogParser和LPS两个压缩文件 二、安装软件 1、需要先安装Log Parser 运行安装上面的文件。 2. 运行Log Parser Studio 在解压的LPSV2.D1文件夹中运行LPS.exe 出现下面…

BR 4P3040.00-490 标准PLC采用梯形逻辑编程

B&R 4P3040.00-490 奥地利贝加莱 电源面板 可编程逻辑控制器(Programmable Logic Controller)技术通常与梯形逻辑编程隔离通信——这是B&R迈出的一大步。B&R平台是基于PC的,这意味着您可以使用PLC系统中不常见的编程语言和功能。例如,可以用…

《架构设计》-09-分布式服务架构(注册中心、服务发布、服务调用、服务治理)

文章目录 1. 概述2. 集群容错策略3. 服务路由3.1 直接路由3.2 间接路由和注册中心3.3 路由规则3.4 服务路由/负载均衡/集群容错的关系 4. 服务发布4.1 发布启动器4.2 动态代理4.3 发布管理器4.4 协议服务器 5. 服务调用6. 服务治理 1. 概述 RPC架构的意义 解决了分布式环境下两…

chatgpt赋能python:Python写UDF对于SEO的影响

Python写UDF对于SEO的影响 作为一名有10年python编程经验的工程师,我对Python写UDF的优势深有体会。UDF(User-Defined Functions)是用户自定义函数的缩写,在数据处理和数据分析的过程中经常用到。下面我将介绍Python写UDF对于SEO…

渲染学生信息表

代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-width, initi…

MFC(六)框架理论

关键类 ,MFC中关键类有&#xff1a; CMFCAPP:最底层的类&#xff0c;也是最重要的类&#xff0c;统筹全局&#xff0c;管理DOCUMENT TEMPLATE CFRAMEWND:框架窗口&#xff0c;包括菜单栏、工具栏、状态栏等等&#xff0c;主要是负责窗口的布局 CVIEW:负责展示具体的数据 C…

chatgpt赋能python:Python内置变量介绍

Python内置变量介绍 Python是一种高级编程语言&#xff0c;具有简单易学、可读性强、可扩展性强等特点。在Python中&#xff0c;有许多内置变量&#xff08;built-in variables&#xff09;&#xff0c;以方便用户在编写程序时进行使用。本文将会对Python中的内置变量进行介绍…

基于SpringBoot+Vue的逍遥大药房管理系统设计与实现

博主介绍&#xff1a; 大家好&#xff0c;我是一名在Java圈混迹十余年的程序员&#xff0c;精通Java编程语言&#xff0c;同时也熟练掌握微信小程序、Python和Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我擅长在JavaWeb、SSH、SSM、SpringBoot等框架下…

干货,一文弄懂RF检波器那些事

WiFi、4G、蓝牙等各种无线连接技术的普及带动各种终端设备井喷式增长&#xff0c;包括物联网、可穿戴等各种基于无线连接技术的新兴产业迅速成长起来&#xff0c;各种无线信号链解决方案涌现推动这种热潮的持续发展。在无线信号链中&#xff0c;很久没有听到有人提起一个关键的…

快速开发和使用Android串口

一、什么是串口 串口叫做串行接口&#xff0c;也称串行通信接口&#xff0c;也可以叫做COM口&#xff0c;按电气标准及协议来分包括RS-232-C、RS-422、RS485、USB等。串行接口是指数据一位一位地顺序传送&#xff0c;其特点是通信线路简单&#xff0c;只要一对传输线就可以实现…

计算机视觉—YOLO V4

计算机视觉—YOLO V4 1、YOLO V41.1、网络结构1.1.1、BackBone&#xff1a;CSPDarknet531.1.2、Neck&#xff1a;SPP结构1.1.3、Neck&#xff1a;PAN结构1.1.4、YOLO v4整体结构 1.2、优化策略 1、YOLO V4 原论文下载地址&#xff1a;https://arxiv.org/abs/2004.10934 1.1、…

Windows中安装GCC教程

GCC的安装教程 GCC简介 GCC编译器通常在Linux系统下使用&#xff0c;一般来说大部分发行的系统会默认安装&#xff0c;GCC编译器使用gcc指令在终端进行shell操作。 对于新接触Linux的朋友来说&#xff0c;简单的在Windows中练习过渡一下应该就足够了。&#xff08;我就是因为…

Apache IoTDB 荣获国家网信办 2022 年中国开源创新大赛决赛一等奖,三位核心研发荣获表彰!...

项目获得权威认可&#xff01; 2023 年 5 月 15 日&#xff0c;2022 年中国开源创新大赛组委会对外公布“2022 中国互联网发展创新与投资大赛公益项目暨2022年中国开源创新大赛”决赛获奖名单&#xff0c;并于 2023 年 5 月 31 日在北京举办“2022年中国开源创新大赛总结发布活…

chatgpt赋能python:用Python编写FizzBuzz——解析最简单的编程题

用Python编写FizzBuzz——解析最简单的编程题 作为每个程序员的入门题目&#xff0c;FizzBuzz是一个简单但常见的问题。FizzBuzz要求我们用数字1到100来打印输出&#xff0c;但是当数字是3的倍数时&#xff0c;需要输出Fizz&#xff1b;当数字是5的倍数时&#xff0c;需要输出…

力扣高频SQL50题(基础版)——第三天

力扣高频SQL50题(基础版)——第三天 1 产品销售分析Ⅰ 1.1 题目内容 1.1.1 基本题目信息1 1.1.2 基本题目信息2 1.1.3 示例输入输出 1.2 示例sql语句 # Write your MySQL query statement below SELECT p.product_name,s.year,s.price FROM Sales s INNER JOIN Product p …